Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2_modul_kruglikov

.pdf
Скачиваний:
7
Добавлен:
13.03.2015
Размер:
1.29 Mб
Скачать

Чтобы по значениям параметров характеристики холостого хода, а также по значениям параметров продольной и поперечной мдс реакций якоря найти эдс и , необходимо заменить синусои-

ды и эквивалентной кривой мдс возбуждения (рис. 2.19, г), так как характеристика холостого хода строится в зависимости от полной мдс возбуждения, а не от первой её гармоники.Предполагая, что при равномерном воздушном зазоре форма мдс возбуждения прямоугольная, получим (см. рис. 2.19, г)

,

(2.30)

где – коэффициент формы магнитного поля возбуждения.

Продольная и поперечная мдс реакции якоря в масштабе мдс возбуждения (приведённые к обмотке возбуждения)

или

;

(2.31)

или

,

(2.32)

где

 

коэффициент продольной реакции якоря;

 

коэффициент поперечной реакции якоря.

Коэффициенты

и

зависят от формы полюсных наконечников ротора, воздушного зазора

и коэффициента полюсной дуги

; они определя-

ются по специальным таблицам или кривым, представленным на рис. 2.20.

 

 

 

По значениям

и

исходя из характеристик холостого хода могут быть определены

и

, необходимые для построения векторных

диаграмм.

 

 

 

 

 

5. ВНЕШНИЕ ХАРАКТЕРИСТИКИ СИНХРОННЫХ ГЕНЕРАТОРОВ

Внешняя характеристика.

Внешняя характеристика синхронного генератора характеризует его электрические свойства и представляет собой зависимость напряжения на зажимах генератора U от его тока нагрузки I при постоянных значениях коэффициента мощности cosφ, скорости вращения ротора n и тока возбуждения Iв.

Чтобы экспериментально получить внешнюю характеристику, нужно сначала нагрузить генератор до номинального тока Iн при номинальном напряжении Uн на зажимах генератора, которое устанавливается путём регулировки тока возбуждения. Затем, поддерживая ток возбуждения и частоту вращения постоянными, постепенно уменьшают ток нагрузки до нуля. Внешние характеристики могут иметь спад (кривая 2) или подъём (кривая 3) в зависимости от характеристики нагрузки и действия реакции якоря.

Номинальный режим нагрузки выбирают так, чтобы при cosφ = 0,8 изменение напряжения ΔU не превышало 35 – 45% от номинального (кривая 1).

Внешняя характеристика генератора Синхронные генераторы малой мощности используются как автономные источники питания. Их мощность соизмерима с

мощностью подключенной нагрузки, поэтому нагрузка оказывает значительное воздействие на электромагнитные процессы в таком генераторе. В самом общем виде влияние нагрузки на генератор отражается внешней характеристикой.

Внешней характеристикой называется зависимость падения напряжения в нагрузке, подключённой к обмотке статора, от величины протекающего в ней тока. На рис. (а) приведены внешние характеристики синхронного генератора для различных видов нагрузки. Все характеристики нелинейны и монотонны. Они исходят из точки холостого хода, где напряжение на выхо-

де генератора в точности равно ЭДС , наводимой магнитным потоком ротора в обмотках статора.

При активной и активно-индуктивной нагрузке внешняя характеристика синхронного генератора имеет отрицательный наклон

на всём интервале от точки холостого хода () до точки короткого замыкания ().

При активно-емкостной нагрузки внешняя характеристика имеет участок, на котором напряжение на выходе генератора превышает ЭДС холостого хода. Механизм появления такого участка поясняют векторные диаграммы на рис. (б) и (в). Если изменять характер нагрузки в пределах -, сохраняя при этом постоянным значение тока (на-

пример, его номинальное значение ), то конец вектора будет описывать на комплексной плоскости дугу полуокружности. Вектор падения напряжения , соответствующий суммарной ЭДС потока рассеяния и реакции якоря, перпендикулярен вектору тока , и в сумме с падением напряжения в нагрузке образует вектор ЭДС холостого хода , т.е. ЭДС потока ротора. Эта ЭДС не зависит от величины и характера нагрузки. Не зависит от них и синхронное сопротивление , поэтому при вращении вектора тока вектор будет поворачиваться относительно точки конца вектора и его начало будет описывать полуокружность, являющуюся геометрическим местом точек конца вектора падения напряжения в на-

грузке . На рис. (б) приведены две системы векторов для активно-индуктивной и активно-емкостной нагрузок.

Если с помощью вектора в качестве радиуса построить дугу окружности AB, то она пересечёт полуокружность вектора в точке B, которая и определит граничное значение угла , начиная с которого () напряжение на выходе генератора при данном токе будет превос-

ходить ЭДС холостого хода ротора. Из равностороннего треугольника 0AB (рис. (в)), образованного векторами , и , на высоте которого

располагается вектор тока

, легко можно определить предельный фазовый угол нагрузки

.

6 ВОПРОС РЕГУЛИРОВОЧНАЯ ХАРАКТЕРИСТИКА СИНХРОННОГО ГЕНЕРАТОРА представляет собой зависимость тока возбуждения генератора Iв от тока нагрузки I при

U = =const , n=nН =const и cosи const

Эта характеристика показывает, как выбрать ток возбуждения, при котором напряжение на зажимах генератора оставалось бы постоянным при изменениях нагрузки.

Чтобы экспериментально получить регулировочную характеристику, нужно сначала включить генератор и сообщить его ротору номинальную скорость вращения Пц при холостом ходе, а потом путем изменения тока возбуждения добиться получения номинального напряжения и„ . Далее постепенно увеличивают ток нагрузки и снимают характеристику, добиваясь в каждой точке постоянства напряжения на зажимах машины (V = [7„ = сопз1 ) путем регулирования тока возбуждения. На рис. 9.5 изображены регулировочные характеристики для различных значений. Мы видим, что при активно-индуктивной нагрузке, когда (р >. О ( кривая 2), ток возбуждения необходимо увеличивать, а при активно-емкостной нагрузке, когда ^? < О (кривая 3) - уменьшать. Кривая 1 соответствует оптимальному режиму. Все эти явления обусловлены реакцией якоря.

7. ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С СЕТЬЮ

Особенности работы генератора на сеть большой мощности. Обычно на электростанциях устанавливают несколько синхронных генераторов для параллельной работы на общую электрическую сеть. Это обеспечивает увеличение общей мощности электростанции (при ограниченной мощности каждого из установленных на ней генераторов), повышает надежность энергоснабжения потребителей и позволяет лучше организовать обслуживание агрегатов. Электрические станции, в свою очередь, объединяют для параллельной работы в мощные энергосистемы, позволяющие наилучшим образом решать задачу производства и распределения электрической энергии. Таким образом, для синхронной машины, установленной на электрической станции или на каком-либо объекте, подключенном к энергосистеме, типичным является режим работы на сеть большой мощности, по сравнению с которой собственная мощность генератора является очень малой. В этом случае с большой степенью точности можно принять, что генератор работает параллельно с сетью бесконечно большой мощности т. е. чтонапряжение сети Uc и ее частота fc являются постоянными, не зависящими от нагрузки данного генератора.

Включение генератора на параллельную работу с сетью. В рассматриваемом режиме необходимо обеспечить возможно меньший бросок тока в момент присоединения генератора к сети. В противном случае возможны срабатывание защиты поломка генератора или первичного двигателя.

Ток в момент подключения генератора к сети будет равен нулю, если удастся обеспечить равенство мгновенных значений напряжений сети uс и генератора иг : (6.27)

Ucm sin (ωct - αс ) = Uгm sin (ωг - αг ).

На практике выполнение условия (6.27) сводится к выполнению трех равенств: значений напряжений сети и генератора Ucm = Uгm или Uc = Uг ; частот ωc = ωг или fс = fг ; их начальных фазαс = αг (совпадение по фазе векторов Úc и Úг). Кроме того, для трехфазных генераторов нужно согласовать порядок чередования фаз.

Совокупность операций, проводимых при подключении генератора к сети, называют синхронизацией. Практически при синхронизации генератора сначала устанавливают номинальную частоту вращения ротора, что обеспечивает приближенное равенство частот fс ≈ fга затем, регулируя ток возбуждения, добиваются равенства напряжения Uc = Uг . Совпадение по фазе векторов напряжений сети и генератора (αс = αг) контроли-

руется специальными приборами — ламповым и стрелочными синхроноскопами.

Ламповые синхроноскопы применяют для синхронизации генераторов малой мощности, поэтому обычно их используют в лабораторной практике. Этот прибор представляет собой три лампы, включенные между фазами генератора и сети (рис. 6.32, а). На каждую лампу действует напряжение u = uс uг , которое при fс fг изменяется с частотой f = fc - fг , называемойчастотой биений (рис. 6.32,б). В этом случае лампы мигают. При fс fг разность и изменяется медленно, вследствие чего лампы постепенно загораются и погасают.

Рис. 6.32. Схема подключения синхронного генератора к сети с помощью лампового синхроноскопа (а) и кривые изменения напряжений ис и игперед включением генератора (б)

Обычно генератор подключают к сети в тот момент, когда разность напряжений u на короткое время становится близкой нулю, т. е. в середине периода погасания ламп. В этом случае выполняется условие совпадения по фазе векторов Úc и Úг . Для более точного определения этого момента часто применяют нулевой вольтметр, имеющий растянутую шкалу в области нуля. После включения генератора в сеть дальнейшая синхронизация частоты его вращения, т. е. обеспечение условия n2 = n1 , происходит автоматически.

Генераторы большой мощности синхронизируют с помощью стрелочных синхроноскопов, работающих по принципу вращающегося магнитного поля. В этих приборах при fс fг стрелка вращается с частотой, пропорциональной разности. частот fс - fг , в одну или другую сторону в зависимости от того, какая из этих частот больше. При fс = fг стрелка устанавливается на нуль; в этот момент и следует подключать генератор к сети. На электрических станциях обычно используют автоматические приборы для синхронизации генераторов без участия обслуживающего персонала.

Довольно часто применяют метод самосинхронизации, при котором генератор подключают к сети при отсутствии возбуждения (обмотка возбуждения замыкается на активное сопротивление). При этом ротор разгоняют до частоты вращения, близкой к синхронной (допускается скольжение до 2%), за счет вращающего момента первичного двигателя и асинхронного момента, обусловленного индуцированием тока

Рис. 6.33. Упрощенные векторные диаграммы неявнополюсного генератора при параллельной работе с сетью в демпферной обмотке. После этого в обмотку возбуждения подают постоянный ток, что приводит к втягиванию ротора в синхронизм. При методе самосинхронизации в момент включения генератора возникает сравнительно большой бросок тока, который не должен превышать 3,5Ia ном .

Регулирование активной мощности. После включения генератора в сеть его напряжение Uстановится равным напряжению сети Uc . Относительно внешней нагрузки напряжения Uи Uc совпадают по фазе, а по контуру «генератор — сеть» находятся в противофазе, т. е. Ú = - Úc (рис. 6.33, а). При точном выполнении указанных трех условий, необходимых для синхронизации генератора, его ток Ia после подключения машины к сети равняется нулю. Рассмотрим, какими способами можно регулировать ток Ia при работе генератора параллельно с сетью на примере неявнополюсного генератора.

Ток, проходящий по обмотке якоря неявнополюсного генератора, можно определить из уравнения (6.23)

(6.28)

Ía = (É0 - Ú)/(jXсн ) = -j(É0 - Ú)/Xсн .

Так как U = Uc = const, то силу тока Iа можно изменять только двумя способами — изменяя ЭДС Е0 по величине или по фазе. Если к валу генератора приложить внешний момент, больший момента, необходимого для компенсации магнитных потерь мощности в стали и механических потерь, то ротор приобретает ускорение, вследствие чего вектор É0 смещается относительно вектора Ú на некоторый угол θ в направлении вращения векторов (рис. 6.33,б). При этом возникает некоторая небалансная ЭДС Е, приводящая согласно (6.28) к появлению тока Iа . Возникающую небалансную ЭДС É = É0 - Ú = É0 + Úc = jÍa Xсн можно показать на векторной диаграмме (рис. 6.33, б). Вектор тока Iа отстает от вектора Е на 90°, поскольку его величина и направление определяются индуктивным сопротивлением Xсн .

При работе в рассматриваемом режиме генератор отдает в сеть активную мощность

Р = mUIa cos φ и на вал его действует электромагнитный тормозной момент, который уравновешивает вращающий момент первичного двигателя, вследствие чего частота вращения ротора остается неизменной. Чем больше внешний момент, приложенный к валу генератора, тем больше угол θ, а следовательно, ток и мощность, отдаваемые генератором в сеть.

Если к валу ротора приложить внешний тормозной момент, то вектор É0 будет отставать от вектора напряжения Ú на угол θ (рис. 6.33, в). При этом возникают небалансная ЭДС É и ток Ía , вектор которого отстает от вектора É на 90°. Так как угол φ > 90°, активная составляющая тока находится в противофазе с напряжением генератора. Следовательно, в рассматриваемом режиме активная мощность Р = mUIa cos φ забирается из сети, и машина работает двигателем, создавая электромагнитный вращающий момент, который уравновешивает внешний тормозной момент; частота вращения ротора при этом снова остается неизменной.

Таким образом, для увеличения нагрузки генератора необходимо увеличивать приложенный кего валу внешний момент (т. е. вращающий момент первичного двигателя), а для уменьшения нагрузки — уменьшать этот момент. При изменении направления внешнего момента (если вал ротора не вращать, а тормозить) машина автоматически переходит из генераторного в двигательный режим.

Регулирование реактивной мощности. Если в машине, подключенной к сети и работающей в режиме холостого хода (рис. 6.34, а), увеличить ток возбуждения Iв, то возрастет ЭДС Е0 (рис. 6.34, б),возникнет небалансная ЭДС É = - jIа Xсн и по обмотке якоря будет проходить ток Iа ,который согласно (6.28) определяется только индуктивным сопротивлением Хсн машины. Следовательно, ток Ía реактивный: он отстает по фазе от напряжения Ú на угол 90° или опережает на тот же угол напряжение сети Úc . При уменьшении тока возбуждения ток Íaизменяет свое направление: он опережает на 90° напряжение Ú (рис. 6.34, в) и отстает на 90° от напряжения Úc .Таким образом, при изменении тока возбуждения изменяется лишь реактивная составляющая тока Iа , т. е. реактивная мощность машины Q. Активная составляющая тока Iа в рассматри-

ваемых случаях равна нулю. Следовательно, активная мощность Р = 0, и машина работает в режиме холостого хода.

При работе машины под нагрузкой создаются те же условия: при изменении тока возбуждения изменяется лишь реактивная составляющая тока Iа , т. е. реактивная мощность машины Q. Режим возбуждения синхронной машины с током Iв.п , при

Рис. 6.34. Упрощенные векторные диаграммы неявнополюсного синхронного генератора при параллельной работе с сетью и отсутствии активной нагрузки котором реактивная составляющая тока Iаравна нулю, называют режимом полного или нормального возбуждения. Если ток возбуждения Iв больше тока Iв.п , при котором имеется режим полного возбуждения, то ток Iасодержит отстающую от U реактивную составляющую, что соответствует активно-индуктивной нагрузке генератора. Такой режим называют режимом перевозбуждения. Если ток возбуждения Iв меньше тока Iв.п , то ток Iа содержит реактивную составляющую, опережающую напряжение U, что соответствует активно-емкостной нагрузке генератора. Такой режим называют режимом недовозбуждения.

Перевозбужденная синхронная машина, работающая в режиме холостого хода, относительно сети эквивалентна емкости. Машину, специально предназначенную для работы в таком режиме, называют синхронным компенсатором и используют для повышения коэффициента мощности электрических установок и стабилизации напряжения в электрических сетях. Недовозбужденная синхронная машина, работающая в режиме холостого хода, относительно сети эквивалентна индуктивности.

Возникновение реактивной составляющей тока Iа физически объясняется тем, что при работе синхронной машины на сеть бесконечно большой мощности суммарный магнитный поток сцепленный с каждой из фаз, ΣФ = Фрез + Фσ = Фв + Фа + Фσ не зависит от тока возбуждения и при всех условиях остается неизменным, так как

(6.29)

Ú = É0 + Éа + Éσа = - Úc = const.

Следовательно, если ток возбуждения Iв больше тока, требуемого для полного возбуждения, то возникает отстающая составляющая тока Iа , которая создает размагничивающий поток реакции якоря Фа ; если ток Iв меньше тока, необходимого для полного возбуждения, то возникает опережающая составляющая тока Iа , которая создает подмагничивающий поток реакции якоря Фа. Во всех случаях суммарный поток машины ΣФ автоматически поддерживается неизменным.

РЕЖИМЫ РАБОТЫ СИНХРОННОГО ГЕНЕРАТОРА ПРИ ПАРАЛЛЕЛЬНОЙ РАБОТЕ С СЕТЬЮ

Способы регулирования. Изменение активной и реактивной мощностей синхронного генератора, работающего параллельно с сетью большой мощности, осуществляется путем изменения внешнего момента и тока возбуждения. Чтобы обеспечить требуемый режим работы генератора, обычно одновременно регулируют и ток возбуждения, и вращающий момент.

Рассмотрим два предельных случая регулирования: а) момента при неизменном токе возбуждения; б) тока возбуждения при неизменном внешнем моменте.

Работа генератора с неизменным током возбуждения. Для генератора с неявно выраженными полюсами векторную диаграмму (рис. 6.35, а)строят по уравнению Ú = É0- а Xсн .Вектор напряжения сети Úc по контуру обмотки генератора имеет направление, встречное вектору напряжения генератора, т. е. Ú = - Úc .

Если генератор работает с cos φ = 1, то вектор тока якоря Íа1 совпадает по направлению с вектором напряжения Ú, а вектор ЭДС É01опережает эти векторы на угол θ1 . При изменении нагрузки, например при ее возрастании, следует увеличить момент, приложенный к валу генератора. При этом угол в должен увеличиться до какого-то значения θ2 в соответствии с возрастанием мощности со значения P1 до Р2.

Принимая

полезную

мощность

(отдаваемую

в

сеть),

равной

электромагнитной

Р = т (Е0/Хсн ) U sin θ, для соотношения мощностей Р1 и Р2 имеем Р1/Р2 = sinθ1/sinθ2. Таким образом, при увеличении мощности с Р1 до Р2

вектор ЭДС É0

поворачивается в сторону опережения и образует с векто-

ром Ú угол θ2. Конец вектора É0

скользит по окружности радиусом, равным Е0, так как ток возбуждения остается неизменным.

 

 

 

Соединив конец вектора Ú с концом вектора É02 , получим вектор а2 Xсн . Вектор тока Íа2перпендикулярен падению напряжения а2Xсн , а его модуль определится из соотношения

 

Ia2/Ia1 = |Íа2Xсн|/|jÍа1Xсн|.

 

 

 

 

 

 

 

При уменьшении мощности с Р1 до Р3 следует уменьшить момент, приложенный к валу генератора. При этом новый угол θ3 меньше угла θ1. Построение всех векторов (рис. 6.35, а) на диаграмме и в этом случае аналогично описанному в предшествующем примере.

Рис. 6.35. Векторные диаграммы синхронного генератора при различных режимах нагрузки

Приведенные диаграммы показывают, что при изменении внешнего момента, приложенного к валу синхронного генератора, работающего параллельно с сетью, изменяется не только активная, но и реактивная мощность. Следовательно, для того чтобы обеспечить наиболее благоприятный или требуемый режим работы генератора, при изменении активной мощности необходимо регулировать и ток возбуждения.

Работа генератора с неизменным моментом. Неизменность внешнего момента на валу ге-

нератора эквивалентна неизменности его мощности Р = mUIa cos φ. При работе на сеть большой мощности U = Uс = const, следовательно, при изменении тока возбуждения остается постоянной активная составляющая тока якоря Ia cos φ = const. На векторной диаграмме (рис. 6.35, б) это условие выражается в том, что конец вектора Íа скользит по прямой АВ, перпендикулярной вектору напряжения Ú. Однако при неизменной мощности (для машины с неявновыраженными полюсами) справедливо условие

Рис. 6.36. U-образные характеристики синхронного генератора

Р = (mЕ0U/Xсн )sinθ = const. При изменении тока возбуждения остаются неизменными все величины, кроме Е0 и sin θ; следовательно, условие неизменной мощности приводит к условию Е0 sin θ = const. На диаграмме это условие выражается в том, что конец вектораÉ0 скользит по прямой CD, параллельной вектору напряжения Ú. Чем меньше ток возбуждения, тем меньше по модулю векторÉ0, но больше угол θ. Вектор тока Iаперпендикулярен вектору падения напряженияа Xсн , поэтому его можно легко построить для каждого угла θ. На рис. 6.35,б показаны положения векторов É0, Íа и а Xсн для трех значений тока Iв (эти векторы имеют индексы 1,2 и 3). Минимальному значению тока Iасоответствует режим работы при cos φ = 1. Чему соответствует определенный ток возбуждения. При увеличении тока возбуждения свыше этого значения или его уменьшения ток Iа возрастает. Зависимость тока якоря от тока возбуждения, называемая U-образной характеристикой, представлена на рис. 6.36. Для каждой мощности имеется вполне определенный ток возбужде-ния, которому соответствует минимум тока якоря. Чем больше мощность, тем больше ток возбуждения, соответствующий минимальному току якоря. Штриховая кривая, проведенная через точки минимумов, соответствует режимам работы генератора с cos φ = 1.

8. СИНХРОННЫЕ ДВИГАТЕЛИ УСТРОЙСТВО СТАТОРА И РОТОРА

В отличие от асинхронного двигателя частота вращения синхронного двигателя постоянна при различных нагрузках. Синхронные двигатели находят применение для привода машин постоянной скорости (насосы, компресоры, вентиляторы).

В статоре синхронного электродвигателя размещается обмотка, подключаемая к сети трехфазного тока и образующая вращающееся магнитное поле. Ротор двигателя состоит из сердечника с обмоткой возбуждения. Обмотка возбуждения через контактные кольца подключается к источнику постоянного тока. Ток обмотки возбуждения создает магнитное поле, намагничивающее ротор.

Роторы синхронных машин могут быть явнополюсными (с явновыраженными полюсами) и неявнополюсными (с неявновыраженными полюсами). На рис. 1а изображен сердечник 1 явнополюсного ротора с выступающими полюсами. На полюсах размещены катушки возбуждения 2. На рисунке 1б изображен неявнополюсной ротор, представляющий собой ферромагнитный цилиндр 1. На поверхности ротора в осевом направлении фрезеруют пазы, в которые укладывают обмотку возбуждения 2.

Рис. 1 Рассмотрим принцип работы синхронного двигателя на модели (рис. 11).

Вращающееся магнитное поле статора представим в виде магнита 1. Намагниченный ротор изобразим в виде магнита 2. Пове р- нем магнит 1 на угол α. Северный магнитный полюс магнита 1 притянет южный полюс магнита 2, а южный полюс магнита 1 - северный полюс магнита 2. Магнит 2 повернется на такой же угол α. Будем вращать магнит 1. Магнит 2 будет вращаться вместе с магнитом 1, причем частоты вращения обоих магнитов будут одинаковыми,синхронными, n2 = n1.

Рис. 11

Синхронный реактивный двигатель - это синхронный двигатель, на роторе которого отсутствует обмотка возбуждения.

Ротор синхронного реактивного двигателя изготавливается из ферромагнитного материала и должен иметь явновыраженные полюсы. Вращающееся магнитное поле статора намагничивает ротор. Явнополюсный ротор имеет неодинаковые магнитные сопротивления по продольной и поперечной осям полюса. Силовые линии магнитного поля статора изгибаются, стремясь пройти по пути с меньшим магнитным сопротивлени-

ем.

Деформация

магнитного

поля

вызовет,

вследствие

упругих

свойств

силовых

линий,

реактивный

момент,

вращающий

ротор

синхронн о

с

полем

статора.

 

Если

к

вращающемуся

ротору

приложить

тормозной

момент, ось

магнитного

поля ротора повернется на угол

θ относительно

оси

магнитного

поля

статора.

 

С

увеличением нагрузки

этот

угол

 

возрастает.

 

Если

нагрузка

превысит

некоторое

 

допустимое

значение,

 

двигатель

остановится,

выпадет

из

синхронизма.

 

У синхронных двигателей отсутствует пусковой момент. Это объясняется тем, что электромагнитный вращающий момент, воздействующий на неподвижный ротор, меняет свое направление два раза за период Т

переменного

тока.

Из-за

 

своей

инерционности,

 

ротор

не

успевает

тронуться

с

места

и

развить

необходимое

 

число

 

оборотов.

Рис. 6.48. Устройство пусковой обмотки синхронного двигателя (о) и схемы его асинхронного пуска (б и в): 1 - обмотка возбуждения; 2 - пусковая обмотка; 3 - ротор; 4 - обмотка якоря; 5 - гасящее сопротивление; 6 - якорь возбудителя; 7 - кольца и щетки

В настоящее время применяется асинхронный пуск синхронного двигателя. В пазах полюсов ротора укладывается дополнительная короткозамкнутая обмотка. Вращающее магнитное поле статора индуктирует в короткозамкнутой пусковой обмотке вихревые токи. При взаимодействии этих токов с магнитным полем стат ора образуется асинхронный электромагнитный момент, приводящий ротор во вращение. Когда частота вращения ротора приближается к частоте вращения статорного поля, двигатель втягивается в синхронизм и вращается с синхронной скоростью. Короткозамк-

нутая обмотка не перемещается относительно поля, вихревые токи в ней не индуктируются, асинхронный пусковой момент становится равным нулю.

9. ПУСК СИНХРОННОГО ДВИГАТЕЛЯ Метод асинхронного пуска. Синхронный двигатель не имеет начального пускового момента. Если его подключить к сети перемен-

ного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока, электромагнитный момент будет дважды изменять свое направление, т. е. средний момент за период равняется нулю. При этих условиях двигатель не сможет прийти во вращение, так как его ротор, обладающий определенной инерцией, не может быть в течение одного полупериода разогнан до синхронной частоты вращения. Следовательно, для пуска синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной.

В настоящее время для этой цели применяют метод асинхронного пуска. При этом методе синхронный двигатель пускают как асинхронный, для чего его снабжают специальной коротко-замкнутой пусковой обмоткой, выполненной по типу «беличья клетка». Чтобы увеличить сопротивление стержней, клетку изготовляют из латуни. При включении трехфазной обмотки статора в сеть обра-

зуется вращающееся магнитное поле, которое, взаимодействуя с током Iпв пусковой

обмотке (рис. 6.48, а), создает электромагнитные силы F и увлекает за собой ротор. После разгона ротора до частоты вращения, близкой к синхронной, постоянный ток, проходящий по обмотке возбуждения, создает синхронизирующий момент, который втягивает ротор в синхронизм.

Применяют две основные схемы пуска синхронного двигателя. При схеме, изображенной на рис. 6.48, б,обмотку возбуждения сначала замыкают на гасящий резистор, сопротивление которого Rдоб превышает в 8 — 12 раз активное сопротивление Rв обмотки возбуждения. После разгона ротора до частоты вращения, близкой к син-

хронной (при s ≈ 0,05), обмотку возбуждения отключают от гасящего резистора и подключают к источнику постоянного тока (возбудителю), вследствие чего ротор втягивается в синхронизм. Осуществить пуск двигателя с разомкнутой обмоткой возбуждения нельзя, так как во время разгона ротора при s > 0 в ней вращающимся магнитным полем индуцируется ЭДС Ев = 4,44f2wвФm = 4,4f1swвФm , где f2 = f1s — частота изменения тока в обмотке возбуждения; wв — число витков обмотки возбуждения; Фm — амплитуда магнитного потока вращающегося поля.

В начальный момент пуска при s = 1 из-за большого числа витков обмотки возбуждения ЭДС Ев может достигать весьма большого значения и вызвать пробой изоляции. При схеме, изображенной на рис. 6.48, в, обмотка возбуждения постоянно подключена к возбудителю, сопротивление которого по сравнению с сопротивлением Rв весьма мало, поэтому эту обмотку в режиме асинхронного пуска можно считать замкнутой накоротко. С уменьшением скольжения до s = 0,3 ÷ 0,4 возбудитель возбуждается и в обмотку возбуждения подается постоянный ток, обеспечивающий при s ≈ 0,05 втягивание ротора в синхронизм. Различие пусковых схем обусловлено тем, что не во всех случаях может быть применена более простая схема с постоянно подключенной к возбудителю обмоткой возбуждения (рис. 6.48, в), так как она имеет худшие пусковые характеристики, чем более сложная схема, приведенная на рис. 6.48,б. Главной причиной ухудшения пусковых характеристик является возникновение одноосного эффекта — влияние тока, индуцируемого в обмотке возбуждения при пуске, на характеристику пускового момента.

Одноосный эффект. Для анализа этого явления предположим сначала, что в двигателе отсутствует пусковая обмотка, а обмотка возбуждения замкнута накоротко. В результате при асинхронном пуске двигателя в обмотке возбуждения индуцируется ЭДС с частотой f2 = f1s и по обмотке проходит переменный ток, создающий пульсирующее магнитное поле (обмотка возбуждения в этом случае является однофазной обмоткой переменного тока). Пульсирующее магнитное поле можно разложить на две составляющие: прямое и обратное вращающиеся магнитные поля ротора, которые характеризуются потоками Фпр и Фобр . Частота вращения каждого из этих полей относи-

тельно

 

 

ротора

пр =

±

60f2/р = ±60f1s/p = ±

n1s.

Относительно статора прямое поле вращается с частотой

(6.46)

nр.пр = n2 + np = n1(1 - s) + n1s = n1 ,

где n2 = n1(1 - s) — частота вращения ротора.

Следовательно, оно вращается синхронно с полем статора; образуемый этим полем с током статора электромагнитный момент Мпр изменяется в зависимости от скольжения так же, как и в трехфазном асинхронном двигателе (рис. 6.49, кривая 2). Обратное поле ротора вращается относительно статора с частотой

(6.47)

пр.обр = n2 - n1 = n1(1 - s) - n1s = n1(1 - 2s).

При частотах вращения ротора n2 < 0,5n1, т. е. при s > 0,5, обратное поле, как видно из формулы (6.47), перемещается относительно статора в сторону, противоположную направлению вращения ротора; при n2 = 0,5n1, это поле неподвижно относительно статора; при n2 > 0,5 (т. е. при s < 0,5) оно перемещается в ту же сторону, что и ротор.

В обмотке статора обратным полем индуцируется ЭДС с частотой f1(1 — 2s), для которой обмотка статора является короткозамкнутой. При этом по обмотке статора проходит соответствующий ток. Взаимодействуя с обратным полем ротора, этот ток создает электромагнитный момент Мо6р . Так как направление момента зависит от направления вращения поля nр.обр относительно статора, то из формулы (6.47) следует, что он является знакопеременным и изменение его направления происходит при s = 0,5 (рис. 6.49, кривая 3).

Таким образом, ток, индуцируемый в обмотке возбуждения при пуске двигателя, создает электромагнитный момент, который при частоте вращения, меньшей 0,5 n1, является ускоряющим, а при большей частоте вращения — тормозящим.

Особенно резко проявляется действие обратного поля при n ≈ 0,5n1.

Наличие пусковой обмотки на роторе существенно уменьшает обратное магнитное поле и создаваемый им момент. Однако этот момент, складываясь с асинхронным моментом пусковой обмотки (кривая 1), создает в кривой результирующего пускового момента провал при частоте вращения, равной половине синхрон-

ной (кривая 4).Этот провал тем больше, чем больше ток в обмотке возбуждения. Очевидно, что включение гасящего сопротивления в цепь обмотки возбуждения (см. рис.

6.48, б) на период пуска уменьшает ток в этой обмотке и улучшает форму кривой пускового момента.

Следует отметить, что если обмотку возбуждения при пуске не отключить от возбудителя, то по якорю возбудителя в период пуска проходит переменный ток, что может вызвать искренне щеток. Поэтому такую схему пуска применяют в Случае небольшого нагрузочного момента — не более 50 % от Номинального, при сравнительно небольшой мощности двигателя.

Рис. 6.49. Зависимость электромагнитного момента от скольжения при асинхронном пуске синхронного двигателя

РЕГУЛИРОВАНИЕ ЧАСТОТЫ ВРАЩЕНИЯ СИНХРОННЫХ ДВИГАТЕЛЕЙ. ВЕНТИЛЬНЫЙ ДВИГАТЕЛЬ

Принципы регулирования. Частота вращения синхронного двигателя п2 равна частоте вращающегося магнитного поля n1 = 60f1/p. Следовательно, ее можно регулировать путем изменения частоты питающего напряжения или числа полюсов 2р. Регулировать частоту вращения путем изменения числа полюсов в синхронном двигателе нецелесообразно, так как в отличие от асинхронного здесь требуется изменять число полюсов как на статоре, так и на роторе, что приводит к значительному усложнению конструкции ротора. Поэтому практически используют лишь изменение частоты питающего напряжения.

К синхронному двигателю применимы все основные положения теории частотного регулирования асинхронного двигателя, в том числе необходимость одновременного изменения как частоты, так и питающего напряжения. Однако в чистом виде частотное регулирование частоты вращения синхронных двигателей применяется только при очень малых мощностях, когда нагрузочные моменты невелики, а инерция приводного механизма мала. При больших мощностях такие условия имеются только в некоторых типах электроприводов, например в электроприводах вентиляторов.

Для синхронных двигателей, применяемых в электроприводах с большим моментом инерции приводного механизма, необходимо очень плавно изменять частоту питающего напряжения, чтобы двигатель не выпал из синхронизма. Особенно сложным является пуск в ход двигателя, когда начальная частота должна составлять доли герца, а затем постепенно повышаться до максимального значения. Для таких электроприводов наиболее пригодным является метод частотного регулирования с самосинхронизацией, при котором двигатель в принципе не может выпасть из синхронизма.

Частотное регулирование без самосинхронизации. Электромагнитный момент синхронного двигателя

(6.48)

М = см IаФв cos ψ = см IаФв cos (φ + θ).

При частотном регулировании обычно стремятся получить режим работы двигателя с cos φ = 1, когда в обмотке якоря имеются минимальные потери энергии. Для этого ток якоря Iа должен поддерживаться по-

стоянным и минимальным: Iаmin = М/(смФв cos θ). (6.49)

Из (6.49) следует, что при неизменных нагрузочном моменте н = М = const) и потоке возбуждения в = const), т. е. токе возбуждения (Iв = const), угол θ в процессе регулирования частоты не должен изменять-

ся. Однако при изменении частоты f1

изменяются ЭДС Е0, угловая скорость ротора ω1 и индуктивное сопротивление Хсн (или сопротивления Хd и Xq при явно-полюсном роторе), т. е.

 

 

(6.50)

 

 

 

 

 

 

 

 

 

 

 

 

Е00ном = Хсн сн.ном = ω11ном =f1/f1ном .

 

 

 

 

 

 

 

 

 

 

Поэтому при частотах питающего напряжения f1, отличных от номинальной частоты f1ном, формула электромагнитного момента [см. (6.35)] принимает вид(6.51)

 

 

 

 

 

 

M = mUE0 sin θ =

mE0номU

* f1ном sin θ = C U sin θ = const,

 

 

 

 

 

 

 

ω1ном Xсн ном

 

 

 

 

 

 

 

ω1Xсн

 

f1

f1

 

 

 

 

где С = mЕ0ном f1ном /(ω1ном Хсн.ном ) - постоянная.

 

 

 

 

 

 

 

 

 

 

Из

(6.51)

следует,

что

при

неизменных

 

значениях

нагрузочного

момента Мн = М и

тока

якоря

Iа = Iамин необходимо выдерживать условие

 

 

 

 

 

 

 

 

 

 

(6.52)

 

 

 

 

 

 

 

 

 

 

 

 

U/f1 = const,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]