Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3_modul_kruglikov

.pdf
Скачиваний:
11
Добавлен:
13.03.2015
Размер:
1.92 Mб
Скачать

12. СХЕМЫ ЗАМЕЩЕНИЯ АСИНХРОННОГО ДВИГАТЕЛЯ

Общественный транспорт - Электрические машины

Для расчета характеристик асинхронного двигателя и исследования различных режимов его работы удобно использовать схемы замещения.

При этом реальная асинхронная машина с электромагнитными связями между обмотками заменяется относительно простой электрической цепью, что позволяет существенно упростить расчет характеристик.

С учетом того, что основные уравнения асинхронного двигателя (2.25) аналогичны таким же уравнениям трансформатора (1.23), схема замещения двигателя такая же, как и у трансформатора, представлена она на рисунке 2.6.

Рисунок 2.6 – T-образная схема замещения асинхронного двигателя

 

 

 

 

 

 

 

 

Изображенная на рисунке 2.6 схема называется T-образной схемой замещения (сопротивления

,

 

и

образуют букву Т),

в ней: r1 и x1–

активное и индуктивное сопротивления фазной обмотки статора;

и –

при-веденные активное и индуктивное сопротивления фазной обмотки

ротора.

 

 

 

 

 

 

 

 

 

Сопротивление

определяет параметры намагничивающей

ветви схемы. Индуктивная

составляющая

является

индуктивным

сопротивлением взаимной индукции. Посредством сопротивления учитываются магнитные потери в стали статора . Как и в

трансформаторе, сопротивление зависит от подведенного напряжения U1. С повышением U1 сопротивление уменьшается.

При расчете характеристик асинхронного двигателя с использованием схемы замещения ее параметры должны быть известны. Схема рисунка 2.6

полностью отражает физические процессы, происходящие в двигателе, но имеет узловую точку между сопротивлениями и , что усложняет расчет токов при различных значениях скольжения. Поэтому большое практическое применение для анализа режимов работы асинхронных машин находит другая схема замещения, в которой намагничивающая ветвь подключена непосредственно на входе схемы, куда подводится напряжение U1 (рисунок 2.7). Данная схема называется Г-образной схемой замещения.

Рисунок 2.7 – Г-образная схема замещения асинхронного двигателя (а) и ее упрощенный вариант (б)

На рисунке 2.7, а комплексный коэффициент

или .

Так как x1 >> xm, то незначительно больше единицы ( ).

Если пренебречь коэффициентом , то получим упрощенную Г-образную схему замещения (рисунок 2.7, б), которую используют при практических расчетах асинхронных двигателей средних и больших мощностей. При этом погрешность в расчете не превышает 1–5%.

Необходимость учета коэффициента возникает главным образом при анализе асинхронных двигателей небольшой мощности.

Согласно (2.22) активное сопротивление обмотки ротора двигателя разбито на две части: . Первое сопротивление не зависит от

режима работы, и потери в нем равны электрическим потерям реального ротора. Второе сопротивление зависит от скольжения, и мощность,

выделяемая в нем, численно равна механической мощности двигателя Рмех. Следовательно сопротивление

в схеме замещения выполняет роль

нагрузки двигателя.

 

Из упрощенной Г-образной схемы замещения можно определить приведенный ток роторной обмотки

 

.

(2.26)

В дальнейшем (2.26) используется при выводе уравнения электромагнитного момента асинхронного двигателя.

13) ВРАЩАЮЩИЙ МОМЕНТ АСИНХРОННОГО ДВИГАТЕЛЯ Принцип действия асинхронного двигателя, как указывалось, основан на взаимодействии вращающегося поля и тока, индуктированного этим полем в обмотке ротора.

В результате взаимодействия магнитного потока Ф с током I2, протекающим в проводниках обмотки ротора, возникают электромагнитные силы, приводящие ротор во вращение.

Поэтому вращающий момент, создаваемый на валу двигателя, зависит от величины тока ротора I2 и от магнитного потока Ф.

Кроме того, на величину вращающего момента асинхронного двигателя влияет сдвиг фаз между током I2 и э. д. с. ротора.

Для уяснения влияния рассмотрим картину электромагнитных сил, действующих па проводники ротора.

Рассмотрим сначала случай, когда индуктивность обмотки ротора мала и поэтому сдвигом фаз между током и э. д. с. можно пренебречь (рис.

255, а). Вращающееся магнитное поле статора здесь заменено полем полюсов N и S, вращающимся, предположим, по направлению часовой стрелки. Пользуясь правилом «правой руки», определяем направление э. д. с. и токов в обмотке ротора. Токи ротора, взаимодействуя с вращающимся магнитным полем, создают момент вращения. Направления сил, действующих на проводники с током, определяются по правилу «левой руки». Как видно из чертежа,

ротор под действием электромагнитных сил будет вращаться в ту же сторону, что и само вращающееся поле, т. е. по часовой стрелке.

Рассмотрим второй случай, когда индуктивность обмотки ротора относительно велика. В этом случае сдвиг фаз между током ротора I2 и э. д. с. ротора будет также значительным. На рис. 255, бмагнитное поле статора асинхронного двигателя по-прежнему показано в виде вращающихся по направлению часовой стрелки полюсов N и S. Направление индуктированной в обмотке ротора э. д. с. остается таким же, как и на рис. 255, а, но вследствие запаздывания тока по фазе максимум тока I2 наступает позднее, чем максимум э. д. с.

На рис. 255 показано направление индуктированных токов в отдельных проводниках ротора в рассматриваемый момент времени, а также направления отдельных электромагнитных сил, действующих на проводники. Если = 0, то все электромагнитные силы будут действовать согласованно. При

большем часть электромагнитных сил создают вращающий момент, направленный по часовой стрелке, а остальные силы — против часовой стрелки.

Магнитный поток Ф не зависит от скорости вращения ротора n. Следовательно, вращающий момент М пропорционален только активной составляющей тока ротора I2 соs ψ2. Индуктивное сопротивление ротора Х2 = 2pfL2, а следовательно, и величина соs ψ2 зависят от частоты тока ротора f2 и поэтому с изменением нагрузки на валу ротора изменяется не только величина токаI2, но и величина соs ψ2.. Таким образом, изменение вращающего момента, развиваемого двигателем, с изменением скорости вращения (и скольжения) определяется одновременно какизменением тока I2, так и изме-

нением соs ψ2.

На основании математического анализа и экспериментального исследования можно построить график зависимости вращающего момента асинхронного двигателя М от скольжения S (рис. 256). Так как каждому значению S соответствует определенное значение n = n0 (1 — S), то указанный график можно представить и как зависимость вращающего момента от скорости n. Зависимость между вращающим моментом М и

скольжением S называется механической характеристикой двигателя (рис. 256)

На кривой А видно, что в начальный момент пуска, когда S= 1 и n = 0, вращающий пусковой момент двигателя относительно невелик. Это объясняется тем, что в момент пуска частота тока в обмотке ротора наибольшая и индуктивное сопротивление обмотки велико. Вследствие этого соs ψ2 имеет малое

значение (около 0,1—0,2). Поэтому, несмотря на большую величину пускового тока, пусковой вращающий момент будет наибольшим. По мере разгона двигателя скольжение уменьшается.

При некотором скольжении S1, называемом критическим, вращающий момент двигателя будет иметь максимальное значение. При дальнейшем уменьшении скольжения (или, иначе говоря, придальнейшем увеличении скорости вращения двигателя) вращающий момент будет быстро уменьшаться и при скольжении S = 0 момент двигателя будет равен нулю. Этот режим соответствует идеальному холостому ходу, когда двигатель не нагружен, а механическими потерями (на трение) можно пренебречь.

Пусковой момент можно увеличить, если в момент пуска уменьшить сдвиг фаз между током и э. д. с. ротора. Если увеличить активное сопротивление цепи ротора, то угол ψ2 уменьшится, что приведет к тому, что соs ψ2 и вращающий момент двигателя станут больше.

Этим пользуются на практике для увеличения пускового вращающего момента двигателя. В момент пуска в цепь ротора вводят активное сопротивление (пусковой реостат), которое затем выводят по мере разгона двигателя.

Увеличение пускового момента приводит к тому, что максимальный вращающий момент двигателя получается при большем скольжении (точка S2 кривой В на рис. 256). Путем увеличения активного сопротивления цепи ротора при пуске можно добиться того, что максимальный вращающий момент будет в момент пуска (S = 1 кривой С).

Вращающий момент, развиваемый асинхронным двигателем, как указывалось, зависит от величины магнитного потека Ф. При снижении приложенного напряжения U1 уменьшается магнитный поток Ф, а следовательно, и вращающий момент, развиваемый дви-

гателем при данной скорости вращения.

Теория и практика показывают, что вращающий момент асинхронного двигателя пропорционален квадрату напряжения, поэтому даже небольшое уменьшение напряжения сети сопровождается резким уменьшением момента.

Кривая А называется естественной механической характеристикой, а кривые В и С — реостат- ным и механическими характеристиками асинхронного двигателя.

Работе двигателя с номинальной нагрузкой соответствует точка N на кривой А. При скольжении SН двигатель развивает номинальный момент Мн.

Ранее было указано, что путем увеличения активного сопротивления цепи роторной обмотки можно увеличить вращающий момент Двигателя. Можно было бы сделать роторную обмотку большего сопротивления, но это вызвало бы значительный нагрев обмотки и уменьшение к. п. д. двигателя. Для улучшения пусковых характеристик асинхронных двигателей с короткозамкнутым ротором применяют двигатели с двумя короткозамкнутыми обмотками на роторе и двигатели с глубоким пазом.

Двигатель с двумя клетками (короткозамкнутыми обмотками) был предложен Доливо-Добровольским. На роторе такого двигателя помещают две клетки (рис. 257): одну — пусковую, имеющуюбольшое активное сопротивление и малое индуктивное сопротивление, и другую — рабочую, обладающую наоборот, малым активным сопротивлением и большим индуктивным сопротивлением.

Стержни пусковой клетки изготовляют обычно из латуни. Материалом рабочей клетки служит медь. Сечение рабочей клетки делается больше сечения пусковой клетки. В результате подбора материала и сечения клеток активное сопротивление пусковой клетки получается в четыре — пять раз больше сопротивления рабочей клетки.

Как видно на рис. 257, б, между стержнями пусковой и рабочей обмоток имеется узкая щель, размеры которой определяют индуктивность нижней рабочей клетки. Рассмотрим работу двуклеточного двигателя.

Индуктивность рабочей клетки больше, так как она сцеплена с большим числом магнитных линий, В момент пуска двигателя, когда частота токов ротора равна частоте сети, индуктивное сопротивление этой клетки особенно велико. Благодаря этому

сдвиг фаз между током рабочей клетки и э. д. е., индуктированной в ней, будет большим, а момент вращения, создаваемый клеткой, — малым. Ввиду большого активного сопротивления и малой индуктивности верхней пусковой клеткиток и э. д. с, индуктированные в ней, будут незначительно сдвинуты по фазе, и вращающий момент, развиваемый пусковой клеткой, будет большим. Следовательно, при пуске вращающий момент двигателя получается преимущественно за счет пусковой клетки.

С увеличением скорости двигателя частота токов ротора уменьшается, индуктивное сопротивление клеток оказывает на работу двигателя все меньшее влияние и поэтому распределение токов в клетках определяется только их активным сопротивлением.

Но, как было указано выше, активное сопротивление рабочей клетки в несколько раз меньше сопротивления пусковой клетки. Поэтому при нормальной работе двигателя большая часть тока проходит по рабочей клетке и вращающий момент получается преимущественно за счет рабочей клетки.

На рис. 258 показана зависимость вращающего момента двигателя с двуклеточным ротором от величины скольжения. На диаграмме кривая 1 показывает изменение момента, создаваемого пусковой обмоткой, кривая 2 — изменение момента, создаваемого рабочей обмоткой. Сумма мгновенных значений моментов двух обмоток дает кривую М момента двуклеточного двигателя.

Более простым в изготовлении является ротор, у которого обе клетки заливают алюминием. На рис. 259 показаны внешний вид и частичный разрез ротора с двойной литой алюминиевой клеткой.

Двуклеточный двигатель дороже асинхронного двигателя с короткозамкнутым ротором обычной конструкции на 20—30%. Наши заводы изготовляют двуклехочные двигатели от 5 до 2000 квт.

Наряду с двуклеточным двигателем применяются двигатели с глубоким пазом (рис. 260). Отношение длины паза к ширине берется в пределах 10—12. Нижняя часть паза сцеплена с большим числом магнитных линий, чем верхняя часть паза. Вследствие этого индуктивное сопротивление нижней части паза больше, чем верхней,

в особенности в момент пуска. Это приводит к вытеснению тока ротора в верхнюю часть стержней обмотки. Плотность тока в верхних слоях стержня увеличивается, что равносильно уменьшении сечения стержней и увеличению активного сопротивления обмотки. Это, как известно, приводит к увеличению вращающего моменте двигателя. Кроме того, увеличение индуктивного и активного сопротивления обмотки ротора вызывает уменьшение пускового тока.

С увеличением скорости двигатель приобретает свойства, соответствующие его обычной конструкции.

14 вопрос.МЕХАНИЧЕСКАЯ ХАРАКТЕРИСТИКА АСИНХРОННОГО ДВИГАТЕЛЯ

Механической характеристикой называется зависимость частоты вращения ротора двигателя или скольжения от момента, развиваемого двигателем при установившемся режиме работы.

n= f(М) или s = f(M).

Механическая характеристика является одной из важнейших характеристик двигателя. При выборе двигателя к производственному механизму из множества двигателей с различными механическими характеристиками выбирают тот, механическая характеристика которого удовлетворяет требованиям механизма.

Уравнение механической характеристики асинхронного двигателя может быть получено на основании формулы (10.41) и схемы замещения. С помощью схемы замещения (см. рис. 10.17) определяют приведенный ток фазы ротора:

(10.49)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I'2 =

U

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r'2

 

 

 

 

 

 

 

 

 

√ (r1 +

 

) + (x1 + x'2)2

 

 

 

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

где

 

 

 

 

 

 

 

 

 

 

 

 

r'2

= r'2

+

r'2(1 - s)

.

 

 

 

 

 

 

 

 

 

s

s

 

 

 

 

 

 

 

 

 

 

Полученное значение тока I'2 nподставляют в уравнение момента (10.41), в котором предварительно I2 и r2 заменяют через их приведенные

значения:

 

 

 

 

 

 

 

 

 

 

(10.50)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M =

3I22r2

=

3I'22r'2

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω0s

 

ω0s

После подстановки получим

(10.51)

M =

3U2r'2

 

 

 

=

 

r'

 

 

 

ω0s [(r1 +

)2

+ (x1 + x'2)2]

 

 

 

s

 

 

 

 

 

Рис. 10.18. Механическая характеристика асинхронного двигателя

Выражение (10.51) представляет собой уравнение механической характеристики, поскольку оно связывает момент и скольжение двигателя. Остальные входящие в уравнение величины: напряжение сети и параметры двигателя — постоянны 1 и не зависят от s и М.Располагая параметрами двигателя, можно рассчитать и построить его механическую характеристику, которая будет иметь вид, изображенный на рис. 10.18.

1 Сопротивление r2 зависит от частоты f2 и, следовательно, от s, но для двигателей общего назначения изменение r2 незначительно.

Однако необходимо отметить, что после включения двигателя в нем происходят сложные переходные электромагнитные процессы. В тех случаях, когда время разбега оказывается соизмеримым с временем электромагнитных процессов, механическая характеристика двигателя в период разбега может существенно отличаться от статической.

Одной из важных точек характеристики, представляющей интерес при анализе работы и выборе двигателя, является точка, где момент, развиваемый двигателем, достигает наибольшего значения. Эта точка имеет координаты nкр , sкр , Mmax . Значение критического скольжения sкр , при котором двигатель развивает максимальный (критический) момент Мmax, легко определить, если взять производную dM/ds выражения (10.51) и приравнять ее нулю.

После дифференцирования и последующих преобразований выражение sкр будет иметь следующий вид:

(10.52)

r'2

sкр = ± √r12 + xк2 .

где хк = x1 + х'2.

Подставив sкр вместо s в уравнение (10.51), получим выражение максимального момента

(10.53)

3U2

Мmax = 0(r1 ± √r12 + xк2 ) .

Необходимо отметить, что из выражений (10.51) — (10.53) вытекает следующее.

Момент, развиваемый двигателем, при любом скольжении пропорционален квадрату напряжения. Максимальный момент пропорционален квадрату напряжения и не зависит от сопротивления цепи ротора. Критическое скольжение пропорционально сопротивлению цепи ротора и не зависит от напряжения сети.

Полученные выражения удобны для анализа, однако из-за отсутствия в каталогах параметровr1, х1, х2 их использование для расчетов и построения характеристик затруднено.

В практике обычно пользуются уравнением механической характеристики, с помощью которого можно произвести необходимые расчеты и построения, используя только каталожные данные.

Активное сопротивление обмотки статора r1 значительно меньше остальных сопротивлений цепи статора и ротора, и им обычно пренебрегают. Тогда выражения (10.51) — (10.53) будут иметь вид

(10.54)

3U2r'2

M = ω0s [(r'2/s)2 + хк2] ;

(10.55)

sкр = ± r'2к;

(10.56)

3U2

Mmax= 0хк ;

Упрощенное уравнение механической характеристики получается из совместного решения уравнений (10.54) — (10.56):

(10.57)

 

 

M =

2M max

;

s/sк + sк/s

 

 

Значение Мmax определяется из отношения Мmaxном = λ, указываемого в каталогах, a sкр — из уравнения (10.57), если решить его относительно sкр и вместо текущих значений s и М подставить их номинальные значения, которые легко определить по паспортным данным:

(10.58)

sкр = sном (λ ± √λ2 - 1),

где sном = (n0 - nном)/n0; λ = Мmaxном.

Следует отметить, что в зоне от М = 0 до М ≈ 0,9Мmax механическая характеристика близка к прямой линии. Поэтому, например, при расчетах пусковых и регулировочных резисторов эту часть механической характеристики принимают за прямую линию, проходящую через точки М = 0, n = n0 и Мном , nном . Уравнение механической характеристики в этой части будет иметь вид

M = Мном s.

sном

МЕХАНИЧЕСКАЯ ХАРАКТЕРИСТИКА АСИНХРОННОГО ДВИГАТЕЛЯ

Механической характеристикой называется зависимость частоты вращения ротора двигателя или скольжения от момента, развиваемого двигателем при установившемся режиме работы.

n= f(М) или s = f(M).

Механическая характеристика является одной из важнейших характеристик двигателя. При выборе двигателя к производственному механизму из множества двигателей с различными механическими характеристиками выбирают тот, механическая характеристика которого удовлетворяет требованиям механизма.

Уравнение механической характеристики асинхронного двигателя может быть получено на основании формулы (10.41) и схемы замещения. С помощью схемы замещения (см. рис. 10.17) определяют приведенный ток фазы ротора:

(10.49)

 

 

 

 

 

 

 

 

 

 

I'2 =

U

 

 

,

 

 

 

 

 

 

 

 

 

 

r'2

 

 

 

 

 

√ (r1 +

) + (x1 + x'2)2

 

 

 

 

s

 

 

 

 

 

 

 

 

где

 

 

 

 

 

 

 

r'2

= r'2 +

r'2(1 - s)

.

 

 

 

 

 

 

 

 

s

s

 

 

 

Полученное значение тока I'2 nподставляют в уравнение момента (10.41), в котором предварительно I2 и r2 заменяют через их приведенные

значения:

 

 

 

 

 

 

 

(10.50)

 

 

 

 

 

 

 

 

M =

3I22r2

=

3I'22r'2

.

 

 

 

 

 

 

 

ω0s

 

ω0s

После подстановки получим

 

 

 

 

 

 

 

(10.51)

 

 

 

 

 

 

 

M =

3U2r'2

 

 

 

 

 

=

 

 

r'

 

 

 

ω0s [(r1 +

 

)2 + (x1 + x'2)2]

 

 

 

 

 

s

 

 

 

 

 

 

 

Рис. 10.18. Механическая характеристика асинхронного двигателя

Выражение (10.51) представляет собой уравнение механической характеристики, поскольку оно связывает момент и скольжение двигателя. Остальные входящие в уравнение величины: напряжение сети и параметры двигателя — постоянны 1 и не зависят от s и М.Располагая параметрами двигателя, можно рассчитать и построить его механическую характеристику, которая будет иметь вид, изображенный на рис. 10.18.

1 Сопротивление r2 зависит от частоты f2 и, следовательно, от s, но для двигателей общего назначения изменение r2 незначительно.

Однако необходимо отметить, что после включения двигателя в нем происходят сложные переходные электромагнитные процессы. В тех случаях, когда время разбега оказывается соизмеримым с временем электромагнитных процессов, механическая характеристика двигателя в период разбега может существенно отличаться от статической.

Одной из важных точек характеристики, представляющей интерес при анализе работы и выборе двигателя, является точка, где момент, развиваемый двигателем, достигает наибольшего значения. Эта точка имеет координаты nкр , sкр , Mmax . Значение критического скольжения sкр , при котором двигатель развивает максимальный (критический) момент Мmax, легко определить, если взять производную dM/ds выражения (10.51) и приравнять ее нулю.

После дифференцирования и последующих преобразований выражение sкр будет иметь следующий вид:

(10.52)

r'2

sкр = ± √r12 + xк2 .

где хк = x1 + х'2.

Подставив sкр вместо s в уравнение (10.51), получим выражение максимального момента

(10.53)

3U2

Мmax = 0(r1 ± √r12 + xк2 ) .

Необходимо отметить, что из выражений (10.51) — (10.53) вытекает следующее.

Момент, развиваемый двигателем, при любом скольжении пропорционален квадрату напряжения. Максимальный момент пропорционален квадрату напряжения и не зависит от сопротивления цепи ротора. Критическое скольжение пропорционально сопротивлению цепи ротора и не зависит от напряжения сети.

Полученные выражения удобны для анализа, однако из-за отсутствия в каталогах параметровr1, х1, х2 их использование для расчетов и построения характеристик затруднено.

В практике обычно пользуются уравнением механической характеристики, с помощью которого можно произвести необходимые расчеты и построения, используя только каталожные данные.

Активное сопротивление обмотки статора r1 значительно меньше остальных сопротивлений цепи статора и ротора, и им обычно пренебрегают. Тогда выражения (10.51) — (10.53) будут иметь вид

(10.54)

3U2r'2

M = ω0s [(r'2/s)2 + хк2] ;

(10.55)

sкр = ± r'2к;

(10.56)

3U2

Mmax= 0хк ;

Упрощенное уравнение механической характеристики получается из совместного решения уравнений (10.54) — (10.56):

(10.57)

 

 

M =

2M max

;

s/sк + sк/s

 

 

Значение Мmax определяется из отношения Мmaxном = λ, указываемого в каталогах, a sкр — из уравнения (10.57), если решить его относительно sкр и вместо текущих значений s и М подставить их номинальные значения, которые легко определить по паспортным данным:

(10.58)

sкр = sном (λ ± √λ2 - 1),

где sном = (n0 - nном)/n0; λ = Мmaxном.

Следует отметить, что в зоне от М = 0 до М ≈ 0,9Мmax механическая характеристика близка к прямой линии. Поэтому, например, при расчетах пусковых и регулировочных резисторов эту часть механической характеристики принимают за прямую линию, проходящую через точки М = 0, n = n0 и Мном , nном . Уравнение механической характеристики в этой части будет иметь вид

M = Мном s.

sном

15 ВОПРОС. ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА ПАРАМЕТРЫ ХАРАКТЕРИСТИ АСИНХРОННОГО ДВИГАТЕЛЯ Понижение напряжения при номинальной частоте приводит к уменьшению тока холостого хода и магнитного потока, а значит, и к уменьшению потерь в стали. Величина тока статора, как правило, повышается, коэффициент мощности увеличивается, скольжение возрастает, а к. п. д. несколько падает. Вращающий момент двигателя уменьшается, так как он пропорционален квадрату напряжения.

При повышении напряжения сверх номинального и номинальной частоте двигатель перегревается из-за увеличения потерь в стали. Вращающий момент двигателя растет, величина скольжения уменьшается. Ток холостого хода увеличивается, а коэффициент мощности ухудшается. Ток статора при полной нагрузке может уменьшиться, а при малой нагрузке может увеличиться вследствие увеличения тока холостого хода.

При уменьшении частоты и номинальном напряжении увеличивается ток холостого хода, что приводит к ухудшению коэффициента мощности. Ток статора обычно возрастает. Увеличиваются потери в меди и стали статора, охлаждение двигателя несколько ухудшается вследствие уменьшения частоты вращения.

При повышении частоты сети и номинальном напряжении уменьшается ток холостого хода и вращающий момент.

16 ПУСК АСИНХРОННЫХ ДВИГАТЕЛЕЙ Способы пуска. При пуске двигателя по возможности должны удовлетворяться основные требования: процесс пуска должен осуществляться без

сложных пусковых устройств; пусковой момент должен быть достаточно большим, а пусковые токи - по возможности малыми. Иногда к этим требованиям добавляют и другие, обусловленные особенностями конкретных приводов, в которых используют двигатели: необходимость плавного пуска, максимального пускового момента и пр.

Практически используют следующие способы пуска: непосредственное подключение обмотки статора к сети (прямой пуск); понижение напряжения, подводимого к обмотке статора при пуске; подключение к обмотке ротора пускового реостата.

Прямой пуск. Этот способ применяют для пуска асинхронных двигателей с короткозамкнутым ротором. Двигатели этого типа малой и средней мощности обычно проектируют так, чтобы при непосредственном подключении обмотки статора к сети возникающие пусковые токи не создавали чрезмерных электродинамических усилий и превышений температуры, опасных с точки зрения механической и термической прочности основных элементов машины.

В асинхронных двигателях отношение L/R сравнительно мало (особенно в малых двигателях), поэтому переходный процесс в момент включения характеризуется весьма быстрым затуханием свободного тока. Это позволяет пренебречь свободным током и учитывать только установившееся значение тока переходного процесса.

Двигатели обычно пускают с помощью электромагнитного выключателя К - магнитного пускателя (рис. 4.27, а) и разгоняют автоматически по естественной механической характеристике М (рис. 4.27,6) от точки П, соответствующей начальному моменту пуска, до точкиР, соответствующей условию М = Мст. Ускорение при разгоне определяется разностью абсцисс кривых М и Мст и моментом инерции ротора двигателя и механизма, который приводится во вращение. Если в начальный момент пуска Мп < Мст , двигатель разогнаться не сможет.

Рис. 4.27. Схема прямого пуска асинхронного двигателя и графики изменения моментов и тока

Значение начального пускового момента можно получить из формулы (4.46а), приняв s = 1:

(4.58)

Мп = m1 U12R'2 /{w1

[(R1 + R'2 )2 + (X1 + Х'2 )2 ]}.

 

 

 

 

 

Отношение моментов

Мп ном = kп.м называют кратностью начального пускового момента. Для двигателей с короткозамкнутым ротором

мощностью 0,6—100 кВт ГОСТом установлено kп.м= 1,0÷2,0; мощностью 100-1000 кВт - kп.м = 0,7÷1,0.

Получение кратностей пускового момента, больших регламентированных ГОСТом, обычно нежелательно, так как это связано либо с увеличением активного сопротивления ротора (см. 4.58), либо с изменением конструкции ротора (см. § 4.11), что ухудшает энергетические показатели двигателя.

Недостатком данного способа пуска кроме сравнительно небольшого пускового момента является также большой бросок пускового тока, в пять — семь раз превышающий номинальное значение тока.

Несмотря на указанные недостатки, пуск двигателя путем непосредственного подключения обмотки статора к сети широко применяют благодаря простоте и хорошим технико-экономическим свойствам двигателя с короткозамкнутым ротором — низкой стоимости и высоким энергетическим показателям (η, cos φ1, kм и др.).

Пуск при пониженном напряжении. Такой пуск применяют для асинхронных двигателей с короткозамкнутым ротором большой мощности, а также для двигателей средней мощности при недостаточно мощных электрических сетях. Понижение напряжения может осуществляться следующими путями:

а) переключением обмотки статора с помощью переключателя с нормальной схемы на пусковую схему Y. При этом напряжение, подаваемое на фазы обмотки статора, уменьшается в √ 3раз, что обусловливает уменьшение фазных токов в √ 3 раз и линейных токов в 3 раза. По окончании процесса пуска и разгона двигателя до номинальной частоты вращения обмотку статора переключают обратно на нормальную схему;

б) включением в цепь обмотки статора на период пуска добавочных активных (резисторов)

Рис. 4.28. Схемы включения асин-

или реактивных (реакторов) сопротивлений (рис. 4.28, а). При этом на указанных сопротив лениях

 

создаются некоторые падения напряжения Uдоб, пропорциональные пусковому току, вследствие

хронного двигателя при пуске с пони-

чего к обмотке статора подается пониженное напряжение. По мере разгона двигателя снижается

жением напряжения

ЭДСЕ2s , индуцированная в обмотке ротора, а следовательно, и пусковой ток. В результате уменьшается падение напряжения Uдоб на указанных сопротивлениях и автоматически

возрастает приложенное к двигателю напряжение. После окончания разгона добавочные резисторы или реакторы замыкаются накоротко контактором К1 ;

в) подключением двигателя к сети через понижающий автотрансформатор АТр (рис. 4.28,6), который может иметь несколько ступеней, переключаемых в процессе пуска соответствующей аппаратурой.

Недостатком указанных методов пуска путем понижения напряжения является значительное уменьшение пускового и максимального моментов двигателя, которые пропорциональны квадрату приложенного напряжения, поэтому их можно использовать только при пуске двигателей без нагрузки.

Рис. 4.29. Механические характеристики при включении обмотки статора двигателя по схемам

Y

и

(а) и графики

изменения М

 

и I1

при

пуске

двигателя

путем

переключения

обмотки

статора

со Y на

(б)

 

 

На рис. 4.29 для примера приведены механические характеристики двигателя при номинальном и пониженном напряжении, т. е. при соединении обмотки статора по схемам Y и Δ, а также графики изменения тока I1 и момента М при пуске двигателя путем переключения обмотки статора со Y на . При соединении по схеме Y максимальный и пусковой момент уменьшаются в три раза, вследствие чего двигатель не в состоянии осуществить пуск механизма с нагрузочным моментом Мн.

Пуск с помощью реостата в цепи ротора. Этот способ применяют для пуска двигателей с фазным ротором. Если в цепь ротора включить пусковой реостат Rп, то активное сопротивление цепи ротора увеличится, вследствие чего точка К на круговой диаграмме (рис. 4.30, а) сместится ближе

к точке О (точка К'). При этом максимальный момент (отрезок АмЕм ) не изменяется, а пусковой момент возрастает от значения Мп до М'п, так как

увеличивается отрезок КЕп, пропорциональный этому моменту. Одновременно повышается критическое скольжение, а поэтому зависимость М =f(s)

сдвигается в область больших скольжений, а зависимость п2= f(М) — в область меньших частот вращения (рис. 4.30,6 и в, кривые 1—4).

Для того чтобы пусковой момент был равен максимальному, необходимо так подобрать сопротивление пускового реостата Rп, чтобы точка К' находилась вблизи точки Ам. Это условие выполняется при R'п + R'2 + R1 ≈ X1 + X'2 . Включение сопротивления R пуменьшает также и пусковой ток двигателя, так как в этом случае

(4.59)

In = U1 /√(R'n + R'2+ R1 )2 + (X1 + Х'2 )2 .

Пусковой реостат имеет обычно три — шесть ступеней (рис. 4.31, а), что позволяет в процессе пуска постепенно уменьшать пусковое сопротивление, поддерживая высокое значение пуско-вого момента двигателя. Сначала двигатель пускается по характеристике 4 (рис. 4.31,6), соответствующей сопротивлению

Рис.

4.30.

Круговая диаграмма при включении реостата в цепь ротора асинхронного двигателя и получаемые

при

этом

механические характеристики

Рис. 4.31. Схема реостатного пуска асинхронного двигателя

 

пускового реостата Rп3 = Rдоб1 + Rдоб2 + Rдоб3 , и развивает вращающий

момент Мп.mах . По мере увеличения частоты вращения вращающий

момент М уменьшается и может стать меньше некоторого момента Mп.min .

Поэтому при M = Mп.min часть пускового реостата Rдоб3 выводят, замыкая

контактор КЗ . Вращающий момент при этом мгновенно возрастает до Мп.mах , а затем с увеличением частоты вращения изменяется по характеристике 3, соответствующей сопротивлению реостата Rп2 = Rдоб1 + Rдоб2 . При дальнейшем уменьшении момента М до Mп.minчасть реостата Rдоб2 снова выключается контактором К2 и двигатель переходит на работу по характеристике 2, соответствующей сопротивлению Rп1 = Rдоб1 . Таким образом, при постепенном (ступенчатом) уменьшении сопротивления пускового реостата вращающий момент двигателя изменяется от Мп.mах до Mп.min , а частота вращения возрастает по ломаной кривой, показанной на рис. 4.31,6 жирной линией. В конце пуска пусковой реостат полностью выводят контактором К1, обмотка ротора замыкается накоротко, и двигатель переходит на работу по естественной характеристике 1. Выключение отдельных ступеней пускового реостата в процессе разгона двигателя может осуществляться вручную или автоматически. Таким образом, посредством реостата, включенного в цепь ротора, можно осуществить пуск двигателя при Mп ≈ Мmах и резко уменьшить пусковой ток.

На рис. 4.31, в показан характер изменения тока I1 и частоты вращения n2 при пуске двигателя рассматриваемым способом. Ток также изменяется по ломаной кривой между двумя крайними значениями Imах и Imin.

Недостатком данного способа является его относительная сложность и необходимость применения более дорогих двигателей с фазным ротором. Кроме того, указанные двигатели имеют несколько худшие рабочие характеристики, чем двигатели с короткозамкнутым ротором такой же мощности (кривые η и cos φ1 проходят ниже). В связи с этим двигатели с фазным ротором применяют только при тяжелых условиях пуска, когда необходимо развивать максимально возможный пусковой момент.

17 МОДУЛЬ 3 РЕГУЛИРОВАНИЕ ЧАСТОТЫ ВРАЩЕНИЯ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

Частота вращения асинхронного двигателя

n = n1 (1 – s) = (60f1/p) (1-s) (85)

Из этого выражения видно, что ее можно регулировать, изменяя частоту f1 питающего напряжения, число пар полюсов р и

Рис. 266. Схема переключения катушек обмотки статора (одной фазы) для изменения числа

полюсов: а — при четырех полюсах; б — при двух полюсах

скольжение s. Последнее при заданных значениях момента на валу Мвн и частоты f1 можно изменять путем включения в цепь обмотки ротора реостата.

Регулирование путем изменения частоты питающего напряжения. Этот способ требует наличия преобразователя частоты, к которому должен быть

подключен асинхронный двигатель. На основе управляемых полупроводниковых вентилей (тиристоров) созданы статические преобразователи част оты

и построен ряд опытных электровозов и тепловозов с асинхронными двигателями, частота вращения которых регулируется путем изменения частоты

питающего напряжения. Такой способ регулирования частоты вращения ротора асинхронного двигателя является весьма перспективным.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]