Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

7 семестр / Лекция-Пространственное строение белков

.pdf
Скачиваний:
7
Добавлен:
02.01.2023
Размер:
753.25 Кб
Скачать

26

Пространственное строение белков

1.Конформация белковых молекул. Вторичная структура белков.

2.Третичная структура белков. Силы, стабилизирующие третичную структуру белков. Связь третичной и первичной структур. Денатурация и ренатурация белков. Роль шаперонов в фолдинге белков.

3.Способность к специфическим взаимодействиям как основа биологической активности белков. Избирательное взаимодействие белка с лигандом. Типы природных лигандов.

4.Многообразие структурно и функционально различных белков.

5.Четвертичная структура белков. Биологический свойства олигомерных белков. Роль четвертичной структуры в проявлении определенных биологических функций белка на примере миоглобина и гемоглобина (кинетика оксигенирования Mb и Hb,

транспорт CO2, эффект Бора, регуляция ДФГ). Биологическое значение олигомерных взаимодействий.

Пространственное расположение полипептидных цепей (Конформация пептидных цепей в белках)

Термин конформация используют для описания пространственного расположения в органической молекулы замещающих групп, способных свободно изменять свое положение в пространстве без разрыва каких бы то ни было связей.

Пептидная цепь обладает значительной гибкостью. В результате внутри цепочечных взаимодействий она приобретает определенную пространственную структуру (конформацию). В белках различают два уровня пространственной организации для одной полипептидной цепи: вторичную и третичную структуры белка. Для белков, содержащих несколько полипептидных цепей, возможно, рассматривают пространственную укладку этих цепей относительно друг друга - четвертичную структуру белка.

Вторичная структура белков

- это укладка белковой молекулы в пространстве без учета влияния боковых заместителей. Выделяют два типа вторичной структуры: -спираль и - структуру (складчатый слой). Остановимся более подробно на рассмотрении каждого типа вторичной структуры.

-Спираль представляет из себя правую спираль с одинаковым шагом, равным 3,6 аминокислотных остатков. -Спираль стабилизируется внутримолекулярными водородными связями, возникающими между

27

атомами водорода одной пептидной связи и атомами кислорода четвертой по счету пептидной связи.

C

O

HN

Боковые заместители расположены перпендикулярно плоскости - спирали.

Т.о. свойства данного белка определяются свойствами боковых групп аминокислотных остатков: входящих в состав того или иного белка. Если боковые заместители гидрофобны, то и белок, имеющий структуру - спираль гидрофобен. Примером такого белка является белок кератин, из которого состоят волосы.

В результате получается, что - спираль пронизана водородными связями и является очень устойчивой структурой. При образовании такой спирали работают две тенденции:

молекула стремится к минимуму энергии, т.е. к образованию наибольшего числа водородных связей;

из-за жесткости пептидной связи сблизиться в пространстве могут лишь первая и четвертая пептидные связи.

Вскладчатом слое пептидные цепи располагаются параллельно друг другу, образуя фигуру, подобную листу, сложенному гармошкой. Пептидных цепей, взаимодействующих между собой водородными связями, может быть большое количество. Расположены цепи антипараллельно.

Рис. 1. Складчатый слой

28

Рис. 2. -Спираль

Чем больше пептидных цепей входит в состав складчатого слоя, тем прочнее молекула белка.

Сравним свойства белковых материалов шерсти и шелка и объясним различие в свойствах этих материалов с точки зрения строения белков, из которых они состоят.

Кератин - белок шерсти - имеет вторичную структуру -спираль. Шерстяная нить не такая прочная, как шелковая, легко растягивается в мокром состоянии. Это свойство объясняется тем, что при приложении нагрузки водородные связи рвутся и спираль растягивается.

Фиброин - белок шелка - имеет вторичную -структуру. Шелковая нить не вытягивается и является очень прочной на разрыв. Это свойство объясняется тем, что в складчатом слое взаимодействуют между собой водородными связями много пептидных цепей, что делает эту структуру очень прочной.

Аминокислоты различаются по способности участвовать в образовании -спиралей и -структур. Редко встречаются в -спиралях глицин, аспаргин, тирозин. Пролин дестабилизирует -спиральную структуру. Объясните, почему? В состав -структур входит глицин, почти не встречаются пролин, глютаминовая кислота, аспаргин, гистидин, лизин, серин.

В структуре одного белка могут находиться участки -структур, - спиралей и нерегулярные участки. На нерегулярных участках пептидная

29

цепь может сравнительно легко изгибаться, менять конформацию, в то время, как спираль и складчатый слой представляют собой достаточно жесткие структуры. Содержание -структур и -спиралей в разных белках неодинаково.

Третичная структура белков

определяется взаимодействием боковых заместителей пептидной цепи. Для фибриллярных белков трудно выделить общие закономерности в образовании третичных структур. Что касается глобулярных белков, то такие закономерности существуют, и мы их рассмотрим. Третичная структура глобулярных белков образуется путем дополнительного складывания пептидной цепи, содержащей -структуры, -спирали и нерегулярные участки, так , что гидрофильные боковые группы аминокислотных остатков оказываются на поверхности глобулы, а гидрофобные боковые группы спрятаны вглубь глобулы, иногда образуют гидрофобный карман.

Силы, стабилизирующие третичную структуру белка. Электростатическое взаимодействие между разно заряженными

группами, крайний случай - ионные взаимодействия.

Водородные связи, возникающие между боковыми группами полипептидной цепи.

Гидрофобные взаимодействия.

Ковалентные взаимодействия (образование дисульфидной связи между двумя остатками цистеина с образованием цистина). Образование дисульфидных связей приводит к тому, что удаленные области полипептидной молекулы сближаются и фиксируются. Дисульфидные связи разрушаются под действием восстановителей. Это свойство используется для химической завивки волос, которые почти полностью представляют собой белок кератин, пронизанный дисульфидными связями.

Характер пространственной укладки определяется аминокислотным составом и чередованием аминокислот в полипептидной цепи (первичной структурой). Следовательно, каждый белок имеет только одну пространственную структуру, соответствующую его первичной структуре. Небольшие изменения конформации белковых молекул происходят при взаимодействии с другими молекулами. Эти изменения порой играют огромную роль при функционировании белковых молекул. Так, при присоединении молекулы кислорода к гемоглобину несколько изменяется конформация белка, что приводит к эффекту кооперативного взаимодействия при присоединении остальных трех молекул кислорода. Такое изменение конформации в лежит в основе теории индуцирующего соответствия при объяснении групповой специфичности некоторых ферментов.

Кроме ковалентной дисульфидной все остальные связи, стабилизирующие третичную структуру, являются по своей природе слабыми и легко разрушаются. При разрыве большого числа связей,

30

стабилизирующих пространственную структуру белковой молекулы, упорядоченная уникальная для каждого белка конформация нарушается, при этом часто теряется биологическая активность белка. Такое изменение в пространственном строении называется денатурацией.

Способность к специфическим взаимодействиям как основа биологической активности белков

В основе функционирования белка лежит его способность к взаимодействию с каким-либо другим веществом - лигандом. Лигандом может быть как низкомолекулярное вещество, так и макромолекула, в том числе и другой белок. Лиганд присоединяется к определенному участку глобулярной молекулы - активному центру. Активный центр формируется в ходе образования третичной структуры белка, поэтому при денатурации белка (когда разрушается его третичная структура) белки теряют свою активность. Специфичность взаимодействия белка и лиганда объясняется комплиментарностью пространственной структуры активного центра и молекулы лиганда. Взаимодействие между белком P и лигандом L описывается уравнениями:

P + L PL

1[ PL]

Ксв Кдисс [ P][ L]

Ксв определяет сродство белка к данному лиганда, чем больше Ксв, тем больше сродство.

На специфичности взаимодействия белков и лигандов основан методов разделения белков - аффинная хроматография.

Учитывая, что различные лиганды отличаются Ксв, всегда можно подобрать вещество, похожее по структуре на природный лиганд, но имеющий большее значение Ксв с данным белком. Например, СО имеет Ксв в 100 раз больше, чем О2 с гемоглобином, поэтому достаточно 0,1% СО в воздухе, чтобы заблокировать большое количество молекул гемоглобина. По такому же принципу действуют многие лекарства. Например, дитилин.

O CH3COCH2CH2N+(CH3)3

Ацетилхолин

O O

(CH3)3N+(CH2)2OCCH2CH2COCH2CH2N+(CH3)3

Дитилин

Ацетилхолин - медиатор передачи нервных импульсов на мышцу. Дитилин блокирует белок-рецептор, с которым связывается ацетилхолин и создает эффект парализации.

31

Олигомерные белки. Четвертичная структура белка на примере строения и функционирования гемоглобина

Под четвертичной структурой белка подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладающих первичной, вторичной и третичной структурой и формирование единого в структурном и функциональном отношении макромолекулярного образования. Каждая отдельная полипептидная (протомер или субъединица) не обладают биологической активностью, а образовавшаяся молекула - олигомер обладает биологической активностью. Четвертичная структура белка уникальна, как и другие уровни организации. Четвертичная структура поддерживается нековалентными взаимодействиями между контактными площадками протомеров.

Четвертичная структура белков - еще один пример удивительной мудрости природы. Докажем это на примере функционирования двух белков: миоглобина, обладающего только третичной структурой и гемоглобина, обладающего четвертичной структурой. Гемоглобины представляют собой тетрамерные белки, молекулы которых образованы различными типами полипептидных цепей ( , , , , S). В состав молекулы входит по две цепи двух разных видов. Длина - и -цепей примерно одинакова ( - 141 а.к., - 146 а.к.). Наиболее распространенные гемоглобины имеют следующую тетрамерную структуру: HbA (нормальный гемоглобин взрослого человека) - 2 2,; HbF (фетальный гемоглобин) - 2 2; HbS (гемоглобин при серповидноклеточной анемии) - 2S2; HbA2 (минорный гемоглобин человека) - 2 2.

Четвертичная структура наделяет гемоглобин дополнительными важными особенностями, которые способствуют выполнению гемоглобином уникальной биологической функцией и обеспечивают возможность строгой регуляции его свойств. Гемоглобин обладает аллостерическими свойствами (от греч. - аллос - другой, стерос - пространство). На его примере можно лучше понять свойства других аллостерических белков, поэтому рассмотрим работу гемоглобина подробнее.

Миоглобин способен запасать кислород, а гемоглобин обеспечивает его транспорт. Вторичная и третичная структуры миоглобина и протомеров гемоглобина очень сходны. Простетической группой этих белков является гем. Гем расположен в гидрофобном кармане пептидной цепи каждого протомера, т.е. окружен неполярными остатками, за исключением 2-х остатков гистидина, расположенных по обе стороны плоскости гема. С одним из них (проксимальным гистидином) Fe2+ связано координационно по 5 координационному положению. Второй (дистальный) гистидин расположен почти напротив проксимального, но несколько дальше, поэтому 6-ое координационное положение Fe2+ остается свободным. В неоксигенированном миоглобине или протомере гемоглобина атом железа выступает из плоскости кольца в направлении проксимального гистидина на 0,03 нм. В оксигенированном миоглобине (протомере гемоглобина) кислород

32

занимает 6-ое координационное положение атома железа, при этом Fe2+ не меняет степени окисления. Такого эффекта позволяет достичь гидрофобное белковое окружение гема, которое не позволяет кислороду слишком сблизиться с железом, чтобы его окислить. Железо, координируя О2, выступает из плоскости кольца лишь на 0,01 нм. Т.о., оксигенирование миоглобина сопровождается смещением атома железа и, следовательно, проксимального гистидина и ковалентно связанных с ним аминокислотных остатков в направлении плоскости кольца. В результате белковая глобула меняет конформацию. Эти изменения приводят в гемоглобине сопровождаются разрывом солевых связей между протомерами, что облегчает связывание следующих молекул О2. Тем самым проявляется эффект кооперативного связывания.

Кинетика оксигенирования миоглобина и гемоглобина

Рис. 3. Кинетика оксигенирования Mb и Hb.

Почему миоглобин не способен транспортировать кислород, но зато активно его запасает? Для миоглобина изотерма адсорбции кислорода имеет форму гиперболы. Давление О2 в ткани, окружающей легочные капилляры, составляет 100 мм рт.ст., поэтому миоглобин в легких мог бы весьма эффективно насыщаться кислородом. В венозной крови Р О2 равно 40 мм рт. ст., а в активно работающей мышце - 20 мм рт.ст. Но даже при парциальном давлении 20 мм рт. ст. степень насыщения миоглобина кислородом будет весьма значительна, и поэтому миоглобин не может служить транспортной молекулой для доставки О2 от легких к периферическим тканям. Однако при кислородном голодании, которым сопровождается тяжелая физическая работа, парциальное давление О2 в тканях может понизиться и до 5 мм рт.ст.; при столь низком давлении миоглобин легко отдает кислород, обеспечивая тем самым окислительный синтез АТФ в митохондриях мышечных клеток.

33

Кинетика оксигенирования гемоглобина коренным образом отличается от кинетики оксигенирования миоглобина. Кривая насыщения гемоглобина О2 имеет сигмоидальную форму. Т.о., способность гемоглобина связывать О2 зависит от того, содержатся ли в данном тетрамере другие молекулы О2. Если да, то последующие молекулы О2 присоединяются легче. Для гемоглобина характерна кинетика кооперативного связывания, благодаря которой он связывает максимальное количество О2 в легких и отдает максимальное количество О2 при тех значениях Р О2 , которые имеют место в периферических тканях.

Сродство гемоглобинов к О2 характеризуется величиной Р50- значением парциального давления О2, при котором наблюдается полунасыщение гемоглобина кислородом. Например, для HbA Р50 = 26 мм рт.ст., а для HbF - 20 мм рт. ст. Благодаря этой разнице гемоглобин F отбирает кислород у HbA, находящегося в плацентарной крови.

Транспорт двуокиси углерода

Гемоглобин не только переносит кислород от легких к периферическим тканям, но и ускоряет транспорт СО2 от тканей к легким. Гемоглобин связывает СО2 сразу после освобождения кислорода ( 15 % всего СО2). В эритроцитах происходит ферментативный процесс образования угольной кислоты из СО2, поступающего из тканей: СО2 + Н2О = Н2СО3. Угольная кислота быстро диссоциирует на НСО3- и Н+. Для предотвращения опасного повышения кислотности должна существовать буферная система, способная поглощать избыток протонов. Гемоглобин связывает два протона на каждые четыре освободившиеся молекулы кислорода и определяет буферную емкость крови. В легких идет обратный процесс. Высвобождающиеся протоны связываются с бикарбонатионом с образованием угольной кислоты, которая под действием фермента превращается в СО2 и воду, СО2 выдыхается. Т.о., связывание О2 тесно сопряжено с выдыханием СО2. Это обратимое явление известно как эффект Бора. У миоглобина эффекта Бора не обнаруживается.

Молекулярная основа эффекта Бора

Протоны, ответственные за эффект Бора, высвобождаются в результате разрушения солевых мостиков, которым сопровождается связывание О2, они отсоединяются от остатков His (146) в -цепях гемоглобина. Наоборот, при высвобождении кислорода вновь формируется структура с солевыми мостиками, при образовании которых происходит присоединение протонов к остаткам His.

Регуляция 2,3-бисфосфоглицератом

Недостаток О2 в тканях приводит к накоплению 2,3- бисфосфоглицерата. Это соединение образуется из 1,3-бисфосфоглицерата, промежуточного продукта гликолиза. Тетрамер гемоглобина связывает одну

34

молекулу ДФГ, которая размещается в центральной области, выстланной остатками все 4-х субъединиц. Объем этой полости достаточен только в том случае, когда разрушены солевые мостики между тетрамерами. ДФГ стабилизирует неоксигенированную форму Hb. С фетальным гемоглобином ДФГ связывается менее прочно, поэтому HbF обладает большим сродством к О2, чем гемоглобин взрослого человека.

 

 

 

-

 

O

O

 

 

 

 

 

P

-

 

O

 

 

 

O

 

 

 

-

 

 

 

O

-

 

 

O

O

O

 

 

 

 

 

-

P

 

 

O

 

 

O

 

 

Структура 2,3-бисфосфоглицерата

При увеличении концентрации ДФГ в эритроцитах (например, при снижении парциального давления кислорода), снижается сродство О2 к гемоглобину, этим и обуславливается регулирующее действие ДФГ.

Кооперативные изменения конформации олигомерных белков составляют основу механизма регуляции функциональной активности не только Hb, но и большого числа других белков, в том числе аллостерических ферментов.