Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Физические теории пластичности

..pdf
Скачиваний:
26
Добавлен:
15.11.2022
Размер:
4.38 Mб
Скачать

41.Трусов П.В., Ашихмин В.Н., Швейкин А.И. Двухуровневая модель упругопластического деформирования поликристаллических материалов // Механика композиционных материалов и конструк-

ций. – 2009. – Т. 15, № 3. – С. 327–344.

42.Трусов П.В., Ашихмин В.Н., Швейкин А.И. Анализ деформирования ГЦК-металлов с использованием физической теории упругопластичности // Физическая мезомеханика. – 2010. – Т. 13. –

№ 3. – С. 21–30.

43.Трусов П.В., Волегов П.С. Определяющие соотношения с внут-

ренними переменными и их применение для описания упрочнения в монокристаллах // Физическая мезомеханика. – 2009. –

Т. 12, № 5. – С. 65–72.

44.Трусов П.В., Волегов П.С. Физические теории пластичности: приложение к описанию упрочнения в поликристаллах // Вестник Тамбовского университета. Сер. Естественные и технические науки. – Тамбов, 2010. – Т. 15, вып. 3, ч. 1. – С. 983–984.

45.Трусов П.В., Волегов П.С. Физические теории пластичности: теория и приложения к описанию неупругого деформирования материалов. Ч. 1: Жесткопластические и упругопластические модели // Вестник ПГТУ. Механика. – Пермь: Изд-во Перм. гос.

техн. ун-та, 2011. – № 1. – С. 5–45.

46.Трусов П.В., Волегов П.С. Физические теории пластичности: теория и приложения к описанию неупругого деформирования материалов. Ч. 2: Вязкопластические и упруговязкопластические модели // Вестник ПГТУ. Механика. – Пермь: Изд-во Перм. гос.

техн. ун-та, 2011. – № 2. – С. 101–131.

47.Трусов П.В., Волегов П.С. Физические теории пластичности: теория и приложения к описанию неупругого деформирования материалов. Ч. 3. Теории упрочнения, градиентные модели // Вестник ПГТУ. Механика. – Пермь: Изд-во Перм. гос. техн. ун-та, 2011. – № 3. – С. 146–197.

48.Трусов П.В., Волегов П.С., Швейкин А.И. Конститутивная упруговязкопластическая модель ГЦК-поликристаллов: теория, алго-

ритмы, приложения. – LAP LAMBERT Academic Publishing, 2011. – 147 c.

49.Трусов П.В., Волегов П.С., Янц А.Ю. Описание внутризеренного и зернограничного упрочнения моно- и поликристаллов // Науч- но-технические ведомости СПбГПУ. Физико-математические науки. – СПб., 2010. – № 2 (98). – С. 110–119.

231

50.Трусов П.В., Келлер И.Э. Теория определяющих соотношений. Ч. 1: Общая теория. – Пермь: Изд-во Перм. гос. техн. ун-та, 2006. – 173 с.

51.Трусов П.В., Швейкин А.И. Теория пластичности. – Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2011. – 419 с.

52.Трусов П.В., Швейкин А.И. Многоуровневые физические модели моно- и поликристаллов. Статистические модели // Физическая мезомеханика. – 2011. – Т. 14, № 4. – С. 17–28.

53.Трусов П.В., Швейкин А.И. Многоуровневые физические модели моно- и поликристаллов. Прямые модели // Физическая мезо-

механика. – 2011. – Т. 14, № 5. – С. 5–30.

54.Физическая мезомеханика и компьютерное конструирование материалов: в 2 т. / В.Е. Панин, В.Е. Егорушкин, П.В. Макаров [и др.]. – Новосибирск: Наука; Сибир. изд. фирма РАН, 1995. –

Т. 1. – 298 с.; Т. 2. – 320 с.

55.ХиртДж., ЛотеИ. Теориядислокаций. – М.: Атомиздат, 1972. – 600 с.

56.Хоникомб Р. Пластическая деформация металлов. – М.: Мир, 1972. – 408 с.

57.Швейкин А.И., Ашихмин В.Н., Трусов П.В. О моделях ротации решетки при деформировании металлов // Вестник ПГТУ. Меха-

ника. – Пермь: Изд-во ПГТУ, 2010. – № 1. – С. 111–127.

58.Шермергор Т.Д. Теория упругости микронеоднородных сред. –

М.: Наука, 1977. – 400 с.

59.Янц А.Ю., Волегов П.С. Несимметричная физическая теория пластичности ГЦК-поликристаллов: проблемы определения скоростей сдвигов в системах скольжения при использовании вязких соотношений // Вестник ПНИПУ. Прикладная математика

и механика. – Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2011. – № 9. – С. 200–211.

60.Ahzi S., M’Guil S. A new intermediate model for polycrystalline

viscoplastic deformation and texture evolution // Acta Materialia. – 2008. – Vol. 56. – Р. 5359–5369.

61.Alankar A., Mastorakos I. N., Field D.P. A dislocation-density-based

3D crystal plasticity model for pure aluminum // Acta Materialia. – 2009. – Vol. 57. – Р. 5936–5946.

62.Anand L., Kothari M. A computational procedure for rate-independent

crystal plasticity // J. of the Mechanics and Physics of Solids. – 1996. – Vol. 44. – № 4. – P. 525–558.

63.Asaro R.J. Micromechanics of crystals and polycrystals // Advances in Applied Mechanics. – 1983. – Vol. 23. – Р. 1–115.

232

64.Asaro R.J., Needleman A. Texture development and strain hardening in rate dependent polycrystals // Acta Metall. – 1985. – Vol. 33. № 6. –

P.923–953.

65.Asaro R.J., Rice J.R. Strain localization in ductile single crystals //

J.Mech. Phys. Solids. – 1977. – Vol. 8. – P. 309–338.

66.Ashby M.F. The deformation of plastically non-homogeneous materials // Phil. Mag. 1970. – Vol. 21. – P. 399–424.

67.Baczmaňski A., Hfaiedh N., François M., Wierzbanowski K. Plastic

incompatibility stresses and stored elastic energy in plastically deformed copper // Mater. Sci. Eng. – 2009. – A 501. – Р. 153–165.

68.Balasubramanian S., Anand L. Elasto-viscoplastic constitutive equations

for polycrystalline fcc materials at low homologous temperatures //

J.Mech. and Phys. Solids. – 2002. – Vol. 50. – P. 101–126.

69.Barlat F., Duarte J.M. Ferreira, Gracio J.J., A.B. Lopes, E.F.Rauch

Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample // Int. J. Plasticity. – 2003. – Vol. 19. – Р. 1215–1244.

70.Batra R.C., Zhu Z.G. Effect of loading direction and initial imperfections

on the development of dynamic shear bands in a FCC single crystal // Acta Mechanica. – 1995. – Vol. 113. – № 1–4. – P. 185–203.

71.Beyerlein I.J., Lebensohn R.A., Tome C.N. Modeling texture and

microstructural evolution in the equal channel angular extrusion process // Mater. Sci. and Eng. – 2003. – Vol.A345. – Р. 122–138.

72.Bilby B.A., Gardner L.R.T., Stroh A.N. Continuous distributions of

dislocations and the theory of plasticity // Proc. 9th Int. Congr. Appl. Mech. Bruxelles, 1956. – Universiteґ de Bruxelles. – 1957. – Vol. 8. – Р. 35–44.

73.Bishop J.F.W., Hill R. A theory of the plastic distortion of a polycris-

talline aggregate under combined stresses // Phil. Mag. Ser. 7. – 1951. – Vol. 42. – № 327. – P. 414–427.

74.Bishop J.F.W., Hill R. A theoretical derivation of the plastic proporties

of a polycristalline face – centered metal // Phil. Mag. Ser. 7. – 1951. – Vol. 42. – № 334. – P. 1298–1307.

75.Bőhlke T., Risy G., Bertram A. A texture component model for aniso-

tropic polycrystal plasticity // Comput. Mater. Sci. – 2005. – Vol. 32. – Р. 284–293.

76.Brown S., Kim K. and Anand L. An internal variable constitutive model for hot working of metals // Int. J. Plasticity. – 1989. – Vol. 5. –

P.95–130.

233

77.Bunge H.J. Texture analysis in material science. – London: Butterworths, 1982.

78.Busso E. P. Multiscale approaches: from the nanomechanics to the micromechanics // Computational and Experimental Mechanics of Advanced Materials. – 2006. – P. 141–165.

79.Busso E.P., Cailletaud G. On the selection of active slip systems in crystal plasticity // Int. J. of Plasticity. – 2005. – Vol. 21. – P. 2212–2231.

80.Cailletaud G., Diard O., Feyel F., Forest S. Computational crystal plasticity: from single crystal to homogenized polycrystal // Technische Mechanik. – 2003. – Band 23. Heft 2–4. – P. 130–145.

81.Cermelli P., Gurtin M.E. On the characterization of geometrically

necessary dislocations in finite plasticity // J. Mech. Phys. Solids. – 2001. – Vol. 49. – Р. 1539–1568.

82.Clayton J.D., McDowell D.L. A multiscale multiplicative decomposition for elastoplasticity of polycrystals // Int. J. Plasticity. –

2003. – Vol. 19. – Р. 1401–1444.

83. Cosserat E., Cosserat F. Theorie des corps deformables. – Paris:

A.Hermann et fils, 1909. – 226 p.

84.Cuitino A.M., Ortiz M. Computational modeling of single crystals // Modelling and Simulation in Material Science and Engineering. – 1992. – Vol. 1. – P. 225–263.

85.Demir E. A Taylor-based plasticity model for orthogonal machining of

single-crystal FCC materials including frictional effects // Int. J. Adv. Manuf. Technol. – 2009. – Vol. 40. – Р. 847–856.

86.Deshpande V.S., Needleman A., Van der Giessen E. Finite strain

discrete dislocation plasticity // J. Mech. and Physics Solids. – 2003. – Vol. 51. – Р. 2057–2083.

87.Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity. Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries / O. Diard,

S.Leclercq, G. Rousselier, G. Cailletaud // Int. J. of Plasticity. – 2005. – Vol. 21. – P. 691–722.

88.Eshelby J.D. The determination of the elastic field of an ellipsoidal

inclusion, and related problems // Proc Royal Soc. London. Ser. A. – 1957. – № 241 (1226). – Р. 376–396.

89.Eshelby J.D. The elastic fields outside an ellipsoidal inclusion // Proc Royal Soc. London. – 1959. – № 252 (1271). – Р. 561–569.

90.Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation / L.P. Evers, D.M. Parks,

234

W.A.M. Brekelmans, M.G.D. Geers // J. Mech. and Phys. Solids. – 2002. – Vol. 50. – P. 2403–2424.

91.Micromechanical modelling of the elastoplastic behavior of metallic

material under strain-path changes / J. Fajoui, D. Gloaguen, B. Courant, R. Guillén // Comput. Mech. – 2009. – Vol. 44. – Р. 285–296.

92.Fleck N.A., Hutchinson J.W. Strain gradient plasticity // Adv. Appl. Mech. – 1997. – Vol. 33. – Р. 295–362.

93.Follansbee P.S., Kocks U.F. A constitutive description of copper based on the use of the mechanical threshold stress as an Internal State Variable // Acta Metall. – 1988. – Vol. 36. – Pp. 81–93.

94.Forest S, Sievert R. Elastoviscoplastic constitutive frameworks for generalized continua // Acta Mechanica. – 2003. – Vol. 160. – P. 71–111.

95.Franciosi P. The concepts of latent hardening and strain hardening in metallic single crystals // Acta Metall. – 1985. – Vol. 33. – P. 1601–1612.

96.Franciosi P., Berveiller M., Zaoui A. Latent hardening in copper and

aluminium single crystals // Acta Metall. – 1980. – Vol. 28. – Is. 3 – Р. 273–283.

97.Franz G., Abed-Meraim F., Ben Zineb T. Strain localization analysis

using a multiscale model // Computational Materials Science. – 2009. – Vol. 45. – P. 768–773.

98.Gambin W. A model of rigid – ideally plastic crystal // J. Tech. Phys. – 1987. – Vol. 28. – № 3. – P. 309–326.

99.Hardening description for FCC materials under complex loading paths /

C. Gérard, B. Bacroix, M. Bornert, G. Cailletaud, J. Crépin, S. Leclercq // Comput. Mater. Sci. – 2009. – Vol. 45. – Р. 751–755.

100.Gerken J. M., Dawson P.R. A crystal plasticity model that incorporates

stresses and strains due to slip gradients // J. of the Mechanics and Physics of Solids. – 2008. – Vol. 56. – Р. 1651–1672.

101.Habraken A.M. Modelling the plastic anisotropy of metals // Arch. Comput. Meth. Engng. – 2004. – 11. – № 1. – Р. 3–96.

102.Hill R. On constitutive macro-variables for heterogeneous solids at finite strain // Proc. Royal Soc. Lond. – 1972. – 326 (A). – P. 131–147.

103.Hill R., Havner K.S. Perspectives in the mechanics of elastoplastic crystals // Journal of the Mechanics and Physics of Solids. – 1982. – Vol. 30. – P. 5–22.

104.Huang X. Grain orientation effect on microstructure in tensile strained cooper // Scripta Materialia. – 1998. – Vol. 38. – № 11. – P. 1697–1703.

235

105.Hutchinson J.W. Bounds and self-consistent estimates for creep of

polycrystalline materials // Proc.R. Soc. Lond. – 1976. – 348 (A). – Р. 101–127.

106.Hutchinson, J.W. Elastic-plastic behavior of polycrystalline metals and composites // Proc. Roy. Soc. London. – 1970. – 319 (A). – P. 247–272.

107.Kalidindi S.R. Incorporation of deformation twinning in crystal

plasticity models //J. Mech. Phys. Solids. – 1998. – Vol. 46, № 2. –

P. 267–290.

108.Kalidindi S.R. Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals // Int. J. Plasticity. – 2001. – Vol. 17. – P. 837–860.

109.Kalidindi S.R., Anand L. Macroscopic shape change and evolution of

crystallographic texture in pre-textured FCC metals // J. Mech. Phys. Solids. – 1994. – Vol. 42. – № 3. – P. 459–490.

110.Kalidindi S.R., Bronkhorst C.A., Anand L. Crystallographic texture

evolution in bulk deformation processing of FCC metals // J. Mech. Phys. Solids. – 1992. – Vol. 40. – № 3. – P. 537–569.

111.Kim H.-K., Oh S.-I. Finite element analysis of grain-by-grain

deformation by crystal plasticity with couple stress // Int. J. Plasticity. – 2003. – Vol. 19. – Р. 1245–1270.

112.Kocks U. F., Argon A. S. and Ashby M. F. Thermodynamics and kinetics of slip // Prog. Mater. Sci. – 1975. – Vol. 19. – P. 141–145.

113.Kok S., Beaudoin A.J., Tortorelli D.A. A polycrystal plasticity model based on the mechanical threshold // Int. J. of Plasticity. – 2002. – Vol. 18. – P. 715–741.

114.Kothari M., Anand L. Elasto-viscoplastic constitutive equations for polycrystalline metals: Application to tantalum // Journal of the Mechanics and Physics of Solids. – 1998. – Vol. 46. – P. 51–67, 69–83.

115.Kouchmeshky B., Zabaras N. Modeling the response of HCP

polycrystals deforming by slip and twinning using a finite element representation of the orientation space // Comput. мater. sci. – 2009. – Vol. 45. – Р. 1043–1051.

116.Kratochvil J., Tokuda M. Plastic response of polycrystalline metals subjected to complex deformation history // Trans. ASME. J. Engng. Mater. Technol. – 1984. – Vol. 106. – P. 299–303.

117.Kroner E. Allgemeine kontinuumstheorie der versetzungen und

eigenspannungen // Arch. Rational Mech. Anal. – 1960. – B. 4. – S. 273–334.

236

118. Jr. Deformation bands, the LEDS theory, and their importance in texture development: Part I: Previous evidence and new observations / D. Kuhlman-Wilsdorf, S.S. Kulkarni, J.T. Moore, E.A. Starke // Metallurgical and Mater. Trans. A. – 1999. – Vol. 30A. – P. 2491–2501.

119.Kuhlmann-Wilsdorf D. Deformation bands, the LEDS theory, and their importance in texture development: Part II: Theoretical conclusions // Metallurgical and Mater. Trans. A. – 1999. – Vol. 30A. – P. 2391–2401.

120.Le K. C., Stumpf H. A model of elastoplastic bodies with continuously

distributed dislocations // Int. J. Plasticity. – 1996. – Vol. 12. – Is. 5 – Р. 611–627.

121.Lee E.H. Elastic plastic deformation at finite strain // ASME J. Appl. Mech. – 1969. – Vol. 36. – P. 1–6.

122.Lee E.H., Liu D.T. Elastic-plastic theory with application to planewave analysis // J. Appl. Phys. – 1967. – Vol. 38. – Р. 19–27.

123.Leffers T., Ray R.K. The brass-type texture and its deviation from the copper-type texture // Prog. Mater. Sci. – 2008. – Vol. 17. – P. 98–143.

124.Lin T.H. Analysis of elastic and plastic strains of a face – centered cubic crystal // J. Mech. Phys. Solids. – 1957. – Vol. 5, № 1. – P. 143–149.

125.Lubarda V. A. Constitutive theories based on the multiplicative

decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics // Appl Mech Rev. – 2004. –Vol. 57, № 2. – Р. 95–108.

126.Luscher D.J., McDowell D.L., Bronkhorst C.A. A second gradient

theoretical framework for hierarchical multiscale modeling of materials // Int. J.Plasticity. – 2010. – Vol. 26. – Р. 1248–1275.

127.Ma A., Roters F.A. А constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of

aluminium single crystals //Acta Materialia. – 2004. – Vol. 52. – Р. 3603–3612.

128.Ma A., Roters F., Raabe D. A dislocation density based constitutive

model for crystal plasticity FEM including geometrically necessary dislocations // Acta Materialia. – 2006. – Vol. 54. – Р. 2169–2179.

129.Ma A., Roters F., Raabe D. On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite

element modeling –Theory, experiments, and simulations // Acta Materialia. – 2006. – Vol. 54. – Р. 2181–2194.

130.Ma A., Roters F., Raabe D. A dislocation density based constitutive

law for BCC materials in crystal plasticity FEM // Computational Materials Science. – 2007. – Vol. 39. – Р. 91–95.

237

131.Mahesh S. A hierarchical model for rate-dependent polycrystals // Int.

J.Plasticity. – 2009. – Vol. 25. – Р. 752–767.

132.Mareau C., Favier V., Berveiller M. Micromechanical modeling coupling

time-independent and time-dependent behaviors for heterogeneous materials // Int. J. Solids and Structures. – 2009. – Vol. 46. – Р. 223–237.

133.Masima M. und Sachs G.O. Mechanische Eigenschaften von Messingkristallen // Z. Physik. – 1928. – B. 50. – S. 161–186.

134.Mayeur J.R., McDowell D.L. A three-dimensional crystal plasticity

model for duplex Ti–6Al–4V // Int. J. Plasticity. – 2007. – Vol. 23. – Р. 1457–1485.

135.McDowell D. L. Viscoplasticity of heterogeneous metallic materials // Mater. Sci. Eng. R. – 2008. – Vol. 62. – Р. 67–123.

136.McGinty R.D., McDowell D.L. A semi-implicit integration scheme for rate independent finite crystal plasticity // Int. J. Plasticity. – 2006. – Vol. 22. – P. 996–1025.

137.Menzel A., Steinmann P. On the continuum formulation of higher

gradient plasticity for single and polycrystals // J. Mech. and Physics Solids. – 2000. – Vol. 48. – Is. 8 – Р. 1777–1796.

138.Méric L., Cailletaud G., Gaspérini M. F.E. calculations of copper

bicrystal specimens submitted to tension-compression tests // Acta Metall. – 1994. – Vol. 42. – Is. 3 – Р. 921–935.

139.M’Guil S., Ahzi S., Khaleel M.A. An intermediate viscoplastic model for deformation texture evolution in polycrystals // Proceed. ICOTOM 14. Leuven. Belgium. – 2005. – P. 989–994.

140.Miehe C. Multisurface thermoplasticity for single crystals at large

strains in terms of Eulerian vector updates // Int. J. Solids and Struct. – 1996. – Vol. 33. – № 20–22. – P. 3103–3130.

141.Miehe C., Rosato D. Fast texture updates in fcc polycrystal plasticity based on a linear active-set-estimate of the lattice spin // J. Mech. Phys. – 2007. – Vol. 55. – P. 2687–2716.

142.Myagchilov S., Dawson P.R. Evolution of texture in aggregates of

crystals exhibiting both slip and twinning // Modeling and Simulation in Materials Science and Engineering. – 1999. – Vol. 7, № 6. – P. 975–1004.

143.Naghdi P.M., Srinivasa A.R. A dynamical theory of structured solids.

IBasic developments // Phil. Trans. R. Soc. Lond. – 15 December 1993. – Vol. 345, № 1677. – Р. 425–458.

144.Neale K.W. Use of crystal plasticity in metal forming simulations // Int. J. Mech. Sci. – 1993. – Vol. 35 (12). – Р. 1053–1063.

238

145.Finite element analysis of crystalline solids / A. Needleman, R.J. Asaro, J. Lemonds, D. Peirce // Comp. Meth. Appl. Mech. Engng. – 1985. – Vol. 52. – P. 689–708.

146.Nye J.F. Some geometrical relations in dislocated crystals // Acta Metall. – 1953. – Vol. 1. – Р. 153–162.

147.Orowan E. Problems of plastic gliding // Proc. Phys. Soc. – 1940. – Vol. 62. – P. 8–22.

148.Ortiz M., Repetto E.A. Nonconvex energy minimization and dislo-

cation structures in ductile single crystals // Journal of the Mechanics and Physics of Solids. – 1999. – Vol. 49. – Р. 397–462.

149.Pan, J., Rice, J.R. Rate sensitivity of plastic flow and implications for

yield-surface vertices // Int. J. Solids Struc. – 1983. – Vol. 19. –

P. 973–987.

150.Peirce D., Asaro R.J., Needleman A. An analysis of nonuniform and localized deformation in ductile single crystals // Acta Metallurgica. – 1982. – Vol. 30. – P. 1087–1119.

151.Polizzotto C. A nonlocal strain gradient plasticity theory for finite deformations // Int. J. Plasticity. – 2009. – URL: doi: 10.1016/j.ijplas.2008.09.009

152.Potirniche G.P., Horstemeyer M.F., Ling X.W. An internal state

variable damage model in crystal plasticity // Mechanics of Materials. – 2007. – Vol. 39. – Р. 941–952.

153.Raabe D., Roters F. Using texture components in crystal plasticity

finite element simulations // Int. J. Plasticity. – 2004. – Vol. 20. – Р. 339–361.

154.Radi M., Abdul-Latif A. Grain shape effect on the biaxial elastic-

inelastic behavior of polycrystals with a self-consistent approach // Proc. Eng. – 2009. – Vol. 1. – Р. 13–16.

155.Ramtani S., Bui H.Q., Dirras G. A revisited generalized self-consistent polycrystal model following an incremental small strain formulation

and including grain-size distribution effect // Int. J. Engng Sci. – 2009. – Vol. 47. – Р. 537–553.

156.Rollett A.D., Lee S,. Lebensohn R.A. 3D image-based viscoplastic response with crystal plasticity // Microstructure and Texture in Steels

(eds. A. Haldar, S. Suwas and D. Bhattacharjee). – Springer, 2009. – Р. 255–264.

157.Rousselier G., Leclercq S. A simplified «polycrystalline» model for

viscoplastic and damage finite element analyses // Int. J. Plasticity. – 2006. – Vol. 22. – Р. 685–712.

239

158.Sachs G. Zur Ableitung einer Fliessbedingung // Z. Verein Deut. Ing. – 1928. – В. 72. – S. 734–736.

159.Sauzay M. Analytical modelling of intragranular backstresses due to

deformation induced dislocation microstructures // Int. J. Plasticity. – 2008. – Vol. 24. – Р. 727–745.

160.Shizawa K., Zbib H.M. A thermodynamical theory of gradient

elastoplasticity with dislocation density tensor. I: Fundamentals // Int. J. Plasticity. – 1999. – Vol. 15. – Is. 9 – Р. 899–938.

161.Shu J. Y., Fleck N. A. Strain gradient crystal plasticity: size-dependent

deformation of bicrystals // J. Mech. and Phys. Solids. – 1999. – 47. – Р. 297–324.

162.Steck E. A., Harder J. Finite element simulation of local plastic flow in polycrystals // IVTAM Symposium on Microand Macrostructural

Aspects of Thermoplasticity / O.T. Bruhns and E. Stein (eds.). – 1999. – Р. 79–88.

163.Svendsen B. Continuum thermodynamic models for crystal plasticity

including the effects of

geometrically-necessary dislocations //

J. Mech. Phys. Solids. – 2002. – Vol. 50. – Р. 1297–1329.

164. Taylor G.I. Plastic strain

in metals // J. Inst. Metals. – 1938. –

Vol. 62. – P. 307–324.

 

165.Taylor G.I., Elam C.F. The distortion of an aluminium crystal during a tensile test // Proc. Roy. Soc. (London). – 1923. – Ser. A 102. –

P. 643–647.

166.Taylor G.I., Elam C.F. The plastic extension and fracture of aluminium crystals // Proc. Roy. Soc. (London). – 1925. – Ser. A 108. – P. 28–51.

167.Tinga T., Brekelmans W.A.M., Geers M.G.D. A strain-gradient crystal plasticity framework for single crystal nickel-based superalloys //

Report National Aerospace Laboratory NLR-TP-2005-628. – Amsterdam, 2005. – 35 р.

168.Tokuda M., Kratochvil J. Prediction of subsequent yield surface by

a simple mechanical model of polycrystal // Arch. Mech. – 1984. – Vol. 36. – № 5–6. – P. 661–672.

169.Tokuda M., Kratochvil J., Ohashi Y. On mechanism of induced plastic

anisotropy of polycrystalline metals // Bull. JSME. – 1982. – Vol. 25. – № 208. – P. 1491–1497.

170.Tokuda M., Kratochvil J., Ohno N. Inelastic behaviour of polycrystalline metals under complex loading condition // Int. J. of Plasticity. – 1985. – Vol. 1. – P. 141–150.

240