Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

биология 2909

.docx
Скачиваний:
15
Добавлен:
18.11.2020
Размер:
60.68 Кб
Скачать

1. Фосфоангидридная связь. Такую связь имеют все нуклеотиды: нуклеозидтрифосфаты (АТФ, ГТФ, ЦТФ, УТФ, ТТФ) и нуклеозиддифосфаты (АДФ, ГДФ, ЦДФ, УДФ, ТДФ).

2. Тиоэфирная связь. Примером являются ацил-производные коэнзима А: ацетил-SКоА, сукцинил-SКоА, и другие соединения любой жирной кислоты c HS-КоА.

3. Гуанидинфосфатная связь – присутствует в креатинфосфате, запасном макроэрге мышечной и нервной ткани.

4. Ацилфосфатная связь. К таким макроэргам относится метаболит гликолиза 1,3-дифосфоглицериновая кислота (1,3-дифосфоглицерат). Она обеспечивает синтез АТФ в реакции субстратного фосфорилирования.

5. Енолфосфатная связь. Представитель – фосфоенолпируват, метаболит гликолиза. Он также обеспечивает синтез АТФ в реакции субстратного фосфорилирования в гликолизе.

6. Фотосинтез, его значение в природе. Фотосинтез — один из самых важных биологических процессов на Земле. Благодаря фотосинтезу живые организмы получают кислород, необходимый для дыхания, а сами растения создают полезные органические вещества для своей жизнедеятельности. В этой статье мы поговорим о том, что обозначает фотосинтез, как он происходит и что образуется в процессе фотосинтеза.

Что такое фотосинтез Фотосинтез — процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света образуются органические вещества из неорганических. При фотосинтезе растение поглощает углекислый газ и воду, синтезирует органические вещества и выделяет кислород, как побочный продукт фотосинтеза.

Процессы фотосинтеза идут в тканях, содержащих хлоропласты, — преимущественно, в листе, на который приходится большая часть процессов фотосинтеза. Такая ткань называется хлоренхима, или мезофилл.

Строение хлоропластов Чтобы понять, что происходит в растении при фотосинтезе, изучим подробнее хлоропласты. Хлоропласты — это особые пластиды растительных клеток, в которых происходит фотосинтез.

Хлоропласт — это двумембранный органоид. Внешняя мембрана проницаема для большинства органических и неорганических соединений. Она содержит специальные транспортные белки, благодаря которым нужные для работы хлоропласта пептиды и другие вещества попадают в него из цитоплазмы. Внутренняя мембрана обладает избирательной проницаемостью и способна контролировать, какие именно вещества попадут во внутреннее пространство хлоропласта.

Для хлоропластов характерна сложная система внутренних мембран, позволяющая пространственно организовать фотосинтетический аппарат, упорядочить и разделить реакции фотосинтеза, несовместимые между собой, и их продукты. Мембраны образуют тилакоиды, которые, в свою очередь, собираются в «стопки» — граны. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом.

Внутреннее пространство хлоропласта между гранами заполняет строма — гидрофильный слабоструктурированный матрикс. В строме содержатся необходимые для реакций синтеза сахаров ферменты, а также рибосомы, кольцевая молекула ДНК, крахмальные зёрна.

Пигменты хлоропластов Что происходит во время фотосинтеза? На молекулярном уровне фотосинтез обеспечивают особые вещества — пигменты, благодаря которым энергия солнечного света становится доступной для биологических систем. У фотосинтезирующих организмов можно выделить три основные группы пигментов:

Хлорофиллы: хлорофилл а — у большинства фотосинтезирующих организмов,

хлорофилл b — у высших растений и зелёных водорослей,

хлорофилл c — у бурых водорослей,

хлорофилл d — у некоторых красных водорослей.

Каротиноиды: каротины — у всех фотосинтезирующих организмов, кроме прокариот;

ксантофиллы — у всех фотосинтезирующих организмов, кроме прокариот

Фикобилины — красные и синие пигменты красных водорослей.

В хлоропластах пигменты ассоциированы с белками с помощью ионных, водородных и других типов связей. Не стоит забывать, что у растений есть множество других пигментов, находящихся не в хлоропластах и не принимающих участие в фотосинтезе — например, антоцианы.

Хлорофилл Хлорофиллы выполняют функции поглощения, преобразования и транспорта энергии света. Лучше всего хлорофиллы поглощают свет в синей (430—460 нм) и красной (650—700 нм) областях спектра. Зелёную область спектра хлорофиллы эффективно отражают, что придаёт растению зелёный цвет.

Интересно, что строение молекулы хлорофилла схоже со строением гемоглобина, но центром молекулы хлорофилла является ион магния, а не железа.

Основными хлорофиллами высших растений являются хлорофилл a и хлорофилл b, они входят в состав реакционных центров фотосистем и светособирающих комплексов мембран тилакоидов хлоропластов. Светособирающие комплексы улавливают кванты света и передают энергию к фотосистемам I и II. Фотосистемы — это пигмент-белковые комплексы, играющие ключевую роль в световой фазе фотосинтеза.

Каротиноиды — это жёлтые, оранжевые или красные пигменты. В зелёных листьях каротиноиды обычно незаметны из-за наличия в листьях хлорофилла. При разрушении хлорофилла осенью именно каротиноиды придают листьям характерную жёлто-оранжевую окраску.

Функции каротиноидов: Антенная — входят в состав светособирающих комплексов, улавливают энергию света и передают её на хлорофиллы. Каротиноиды играют роль дополнительных светособирающих пигментов в той части солнечного спектра (450—570 нм), где хлорофиллы малоэффективны. Особенно это важно для водных экосистем, в которых волны оптимальной для хлорофиллов длины быстро исчезают с глубиной.

Защитная функция (антиоксидантная) — обезвреживание агрессивных кислородных соединений (активных форм кислорода) и избытка хлорофилла в возбуждённом состоянии при слишком ярком освещении.

Каротиноиды химически представляют собой 40-углеродную цепь с двумя углеродными кольцами по краям цепи. В строении ксантофиллов, в отличие от каротинов, присутствуют спиртовые, эфирные или альдегидные группы.

Что происходит в процессе фотосинтеза Как уже было сказано ранее, в ходе фотосинтеза в хлоропластах под действием солнечного света образуются органические вещества.

Процесс фотосинтеза можно разделить на две фазы: 1. Световая. 2. Темновая.

В ходе световой фазы фотосинтеза образуется энергия в виде АТФ и универсальный донор атома водорода — восстановитель НАДФН (НАДФ·Н2). Эти вещества необходимы для протекания темновой фазы. Также образуется побочный продукт — кислород. Световая фаза может проходить только на мембранах тилакоидов и на свету.

Благодаря сложному биохимическому процессу — циклу Кальвина — в темновую фазу фотосинтеза образуются органические вещества (сахара). Темновая фаза проходит в строме хлоропластов и на свету, и в темноте. Темновые ферментативные процессы протекают медленнее, чем световые, поэтому при очень ярком освещении скорость протекания фотосинтеза будет полностью определяться скоростью темновой фазы.

Световая фаза фотосинтеза Чтобы лучше понять, что происходит во время фотосинтеза, разберём фазы фотосинтеза. Световая фаза фотосинтеза включает в себя фотохимические и фотофизические процессы, и может быть поделена на три этапа:

Фаза поглощения — энергия света улавливается при помощи светособирающих комплексов, переходит в энергию электронного возбуждения пигментов, передаётся в реакционный центр фотосистем I и II.

Фаза реакционных центров — энергия электронного возбуждения пигментов светособирающих комплексов используется для активации реакционных центров фотосистем. В реакционном центре электрон от возбуждённого хлорофилла передаётся другим компонентам электрон-транспортной цепи, пигмент после отдачи электрона переходит в окисленное состояние и становится способным, в свою очередь, отнимать электроны у других веществ. Именно в этом процессе происходит преобразование физической формы энергии в химическую.

Фаза электрон-транспортной цепи — электроны переносятся по цепи переносчиков, образуются АТФ, НАДФН, O2. Необходимо, чтобы каждый переносчик электрон-транспортной цепи поочерёдно восстанавливался и окислялся, обеспечивая таким образом перенос энергии электронов. Любой этап переноса электрона сопровождается высвобождением или поглощением энергии. Часть энергии теряется. На некоторых участках электрон-транспортной цепи перенос электрона сопряжён с переносом протона.

Для того чтобы понять, что происходит во время фазы фотосинтеза, рассмотрим эти процессы подробнее. Кванты света улавливаются светособирающими комплексами фотосистемы I — молекула хлорофилла в составе светособирающего комплекса переходит в возбуждённое состояние, и энергия передаётся в реакционный центр фотосистемы I. Происходит возбуждение молекул хлорофилла фотосистемы I, отщепляется электрон. Пройдя по цепочке внутренних компонентов фотосистемы I и внешних переносчиков, электрон в конце концов попадает к НАДФ+ — образуется восстановитель НАДФН. Получается, что хлорофилл фотосистемы I отдал электрон и приобрёл положительный заряд, и для дальнейшего функционирования необходимо восстановить нейтральность молекулы, получить электрон, чтобы закрыть «дырку». Этот электрон приходит от фотосистемы II.

На светособирающие комплексы фотосистемы II попадают кванты света — происходит возбуждение молекулы хлорофилла фотосистемы II, молекула хлорофилла отдаёт электрон и переходит в окисленное состояние. Нехватку электрона хлорофилл восполняет благодаря фотолизу воды, при этом образуется протоны H+, а также важный побочный продукт фотосинтеза — кислород. По цепи переносчиков электрон от хлорофилла фотосистемы II попадает к хлорофиллу реакционного центра фотосистемы I и восстанавливает его. Теперь этот хлорофилл может снова поглощать энергию кванта света и отдавать электрон в электрон-транспортную цепь.

Протоны, попадающие во внутритилакоидное пространство, используются для синтеза АТФ. С помощью фермента АТФ-синтазы за счёт градиента протонов образуется АТФ из АДФ и фосфата. Под градиентом понимают неравномерное распределение: во внутритилакоидном пространстве H+ больше, в строме — меньше. Поэтому частицы стремятся проникнуть в строму, переходят в неё через АТФ-синтазу, а в процессе пути сквозь белковый комплекс отдают ему часть энергии, которая и используется для синтеза АТФ.

Темновая фаза фотосинтеза Что образуется при фотосинтезе в темновую фазу? В строме хлоропластов с помощью энергии АТФ и восстановителя НАДФН, полученных в световую фазу, образуются простые сахара, из которых в ходе других процессов образуется крахмал. Ферментативные процессы не нуждаются в наличии света. Важнейший процесс, происходящий в темновую фазу фотосинтеза, — фиксация углекислого газа воздуха. Синтез и превращения сахаров в хлоропластах имеют циклический характер и носят название цикл Кальвина.

В нём можно выделить три этапа: Фаза карбоксилирования (введение CO2 в цикл).

Фаза восстановления (используются АТФ и НАДФН, полученные в световую фазу).

Фаза регенерации (превращения сахаров).

В строме хлоропластов находится производное простого пятиуглеродного сахара рибозы. С помощью особого фермента (Рубиско) к производному рибозы присоединяется CO2 (реакция карбоксилирования) — образуется неустойчивое шестиуглеродное соединение, которое быстро распадается на две трехуглеродные молекулы. Дальше, с затратой АТФ и НАДФН, полученных в ходе световых процессов, трехуглеродное соединение модифицируется — образуется восстановленное соединение с атомом фосфора и альдегидной группой в составе. Теперь перед клеткой стоит проблема: необходимо получить шестиуглеродное соединение — глюкозу для синтеза крахмала, а также пятиуглеродное — производное рибозы для того, чтобы эти процессы могли начаться заново. Для решения этих проблем в фазу регенерации из полученных ранее трехуглеродных соединений под действием ферментов образуются четырёх-, пяти-, шести- и семиуглеродные сахара. Из шестиуглеродной молекулы образуется глюкоза, из которой синтезируется крахмал. Из пятиуглеродной молекулы образуется производное рибозы и цикл замыкается. Остальные сахара также используются клеткой в других биохимических процессах.

Отдельно стоит сказать про крайне важный фермент первой фазы цикла Кальвина — рибулозо-1,5-дифосфаткарбоксилазу (Рубиско). Это сложный фермент, состоящий из 16 субъединиц, с молекулярной массой в 8 раз больше, чем у гемоглобина. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода (из CO2) в биологический круговорот. Содержание Рубиско в листьях растений очень велико, он считается самым распространённым ферментом на Земле.

Значение фотосинтеза В процессе фотосинтеза энергия света заключается в энергию химических связей органических веществ. Поэтому фотосинтез служит первичным источником почти всей энергии, используемой живыми организмами в процессе жизнедеятельности. Практически все живые организмы, за исключением хемосинтетиков, так или иначе пользуются теми продуктами, что выделяются при фотосинтезе.

За счёт фотосинтеза сформировалась и поддерживается пригодная для дыхания атмосфера с высоким содержанием кислорода.

Фиксация углекислого газа в ходе фотосинтеза служит главным местом входа неорганического углерода в биогеохимический цикл. Также ассимиляция CO2 препятствует перегреву Земли, предотвращая парниковый эффект.

7. Характеристика световой фазы фотосинтеза и ее значение. Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О. Н2О → Н+ + ОН- Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида. Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида. Гидроксильные ионы идут на производство кислорода: 4ОН → О2 + 2Н2О Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов. Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования. На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу. Повторим ключевые процессы световой фазы фотосинтеза: Фотон попадает на хлорофилл с выделением электронов. Фотолиз воды. Выделение кислорода. Накопление НАДФН+. Накопление АТФ.

8. Этапы энергетического обмена у анаэробов. Анаэробы - группа живых организмов, которые не используют кислород для получения энергии. У них нет этапа окисления, как у аэробов, весь энергетический обмен представлен двумя этапами. Подготовительным, и гликолизом в цитоплазме. Соответственно они получают всего 2 молекулы АТФ, когда аэробы за весь цикл получают 38 (в 16 раз больше).

Гликолиз - это процесс распада глюкозы в цитозоле. Гликолиз уникален тем, что может происходить как при участии кислорода, если он доступен (пируват -> ацетил-КоА), так и без него (пируват -> лактат). Степень значимости гликолиза как источника энергии различна в различных тканях (например, слабая в сердце и большая в мозге и красных кровяных тельцах). В скелетных мышцах гликолиз происходит интенсивно, когда аэробного обмена недостаточно. В скелетных мышцах в состоянии покоя почти половина ацетил-КоА, используемого в цикле трикарбоновых кислот, получается в результате гликолиза. В этом процессе шестиуглеродная глюкоза расщепляется до трехуглеродного пирувата и затем до ацетил-КоА, что приводит к чистой продукции 2 НАДН и 2 АТФ. НАДН, образованный в ходе гликолиза, транспортируется с помощью малатного челнока в митохондрии и окисляется в дыхательной цепи с чистым выходом 2 АТФ на 1 молекулу НАДН. Таким образом, при полном окислении 1 моль глюкозы в аэробных условиях выход составляет при гликолизе 8 АТФ и в цикле трикарбоновых кислот 30 АТФ.

Скелетные мышцы легко подвергаются анаэробиозу. Это свойство дает им возможность для кратковременного действия, намного более интенсивного, чем может быть в аэробных условиях. Два из трех механизмов повторного синтеза АТФ происходят при анаэробном обмене (т.е. без кислорода). Анаэробный энергетический обмен, также называемый анаэробным гликолизом, включает неполное расщепление углеводов до молочной кислоты. Анаэробный гликолиз участвует в мышечной деятельности, которая продолжается короткий период времени - несколько минут, но требует большого количества энергии, где аэробный обмен не подходит для предоставления энергии. Этот процесс происходит в цитоплазме, и, несмотря на быстрый синтез АТФ, анаэробный гликолиз менее эффективен, чем аэробный. Конечный продукт анаэробного энергетического обмена ~ молочная кислота ~ связана с активностью и длительностью нагрузки. Накопление молочной кислоты понижает внутриклеточный pH, что подавляет активность фосфофруктокиназы, и количество фермента, ограничивающего скорость гликолиза. Более того, содержание НАД Н в мышцах понижается во время нагрузки низкой интенсивности, но возрастает до значений в покое при нагрузках высокой интенсивности. Уровень НАД Н может повышаться в мышцах в результате ограниченной доступности 02 в сокращающейся мышце. Во время интенсивной физической нагрузки повышение количества НАД Н в цитозоле ингибирует пируватдегидрогеназу, что приводит к большему расщеплению пирувата до лактата за счет выщепления атома водорода из НАД Н. Окисленный НАД может действовать как акцептор водорода, обеспечивая продолжение гликолиза и предоставляя энергию для преобразования макроэргических фосфатов. Образование АТФ в анаэробных условия, как правило, высокозатратно. Окисление 1 моль глюкозы приводит к чистому выходу только 2 моль АТФ.

Повышенное образование молочной кислоты может подавить функцию нервно-мышечной системы, самих мышечных волокон, клеток соединительных тканей, а также сосудов, но, кроме того, является стимулом для адаптивных изменений в обмене веществ, которые являются важным компонентом при тренировках, например, спортивных.

Интенсивное использование кислорода также приводит к образованию различных его форм, включая высокореакционноспособные частицы кислорода (ВРЧК) (рис. 2). ВРЧК способствует развитию мышечной усталости и повреждению ткани. В мышечной ткани есть ряд противовоспалительных защитных систем водной и жировой фаз, которые защищают ткань от вредного воздействия ВРЧК при их избытке. Скелетные мышцы способны синтезировать глутатион (GSH), который играет ключевую роль в поддержании противоокислительной защиты. Он сам является окисляемым веществом и помогает поддержать витамин С (в растворимой фазе) и Е (в жировой фазе) в их восстановленном виде. Ферменты глутатионовой системы, например, глутатионпероксидаза и глутатион-S-трансфераза, дополняют каталазу в метаболизме пероксида.

9. Характеристика этапов энергетического обмена аэробов. Энергетический обмен — это по-этапный распад сложных органических соединений, протекающий с выделением энергии, которая запасается в макроэргических связях молекул АТФ и используется потом в процессе жизнедеятельности клетки, в том числе на биосинтез, т.е. пластический обмен.

В аэробных организмах выделяют три последовательных этапа энергетического обмена:

Подготовительный — расщепление биополимеров до мономеров.

Бескислородный — гликолиз — расщепление глюкозы до пировиноградной кислоты.

Кислородный — расщепление пировиноградной кислоты до углекислого газа и воды.

Подготовительный этап На подготовительном этапе энергетического обмена происходит расщепление поступивших с пищей органических соединений на более простые, обычно мономеры. Так углеводы расщепляются до сахаров, в том числе глюкозы; белки — до аминокислот; жиры — до глицерина и жирных кислот.

Хотя при этом выделяется энергия, она не запасается в АТФ и, следовательно, не может быть использована впоследствии. Энергия рассеивается в виде тепла.

Расщепление полимеров у многоклеточных сложноорганизованных животных протекает в пищеварительном тракте под действием выделяющихся сюда железами ферментов. Затем образовавшиеся мономеры всасываются в кровь в основном через кишечник. Уже кровью питательные вещества разносятся по клеткам.

При этом не все вещества разлагаются до мономеров в пищеварительной системе. Расщепление многих происходит непосредственно в клетках, в их лизосомах. У одноклеточных организмов поглощенные вещества попадают в пищеварительные вакуоли, где и перевариваются.

Образовавшиеся мономеры могут использоваться как для энергетического, так и пластического обмена. В первом случае они расщепляются, во-втором – из них синтезируются компоненты самих клеток.

Бескислородный этап энергетического обмена Бескислородный этап протекает в цитоплазме клеток и в случае аэробных организмов включает только гликолиз — ферментативное многоступенчатое окисление глюкозы и ее расщепление до пировиноградной кислоты, которую также называют пируватом.

Молекула глюкозы включает шесть атомов углерода. При гликолизе она расщепляется до двух молекул пирувата, который включает три атома углерода. При этом отщепляется часть атомов водорода, которые передаются на кофермент НАД, который, в свою очередь, потом будет участвовать в кислородном этапе.

Часть выделяющейся при гликолизе энергии запасается в молекулах АТФ. На одну молекулу глюкозы синтезируется всего две молекулы АТФ.

Энергия, оставшаяся в пирувате, запасенная в НАД, у аэробов далее будет извлечена на следующем этапе энергетического обмена.

В анаэробных условиях, когда кислородный этап клеточного дыхания отсутствует, пируват «обезвреживается» в молочную кислоту или подвергается брожению. При этом энергия не запасается. Таким образом, здесь полезный энергетический выход обеспечивается только малоэффектвным гликолизом.

Кислородный этап Кислородный этап протекает в митохондриях. В нем выделяют два подэтапа: цикл Кребса и окислительное фосфорилирование. Поступающий в клетки кислород используется только на втором. В цикле Кребса происходит образование и выделение углекислого газа.

Цикл Кребса протекает в матриксе митохондрий, осуществляется множеством ферментов. В него поступает не сама молекула пировиноградной кислоты (или жирной кислоты, аминокислоты), а отделившаяся от нее с помощью кофермента-А ацетильная группа, включающая два атома углерода бывшего пирувата. За многоступенчатый цикл Кребса происходит расщепление ацетильной группы до двух молекул CO2 и атомов водорода. Водород соединяется с НАД и ФАД. Также происходит синтез молекулы ГДФ, приводящей к синтезу потом АТФ.

На одну молекулу глюкозы, из которой образуется два пирувата, приходится два цикла Кребса. Таким образом, образуется две молекулы АТФ. Если бы энергетический обмен заканчивался здесь, то суммарно расщепление молекулы глюкозы давало бы 4 молекулы АТФ (две от гликолиза).

Окислительное фосфорилирование протекает на кристах – выростах внутренней мембраны митохондрий. Его обеспечивает конвейер ферментов и коферментов, образующий так называемую дыхательную цепь, заканчивающуюся ферментом АТФ-синтетазой.

По дыхательной цепи происходит передача водорода и электронов, поступивших в нее от коферментов НАД и ФАД. Передача осуществляется таким образом, что протоны водорода накапливаются с внешней стороны внутренней мембраны митохондрий, а последние ферменты в цепи передают только электроны.

В конечном итоге электроны передаются молекулам кислорода, находящимся с внутренней стороны мембраны, в результате чего они заряжаются отрицательно. Возникает критический уровень градиента электрического потенциала, приводящий к перемещению протонов через каналы АТФ-синтетазы. Энергия движения протонов водорода используется для синтеза молекул АТФ, а сами протоны соединяются с анионами кислорода с образованием молекул воды.

Энергетический выход функционирования дыхательной цепи, выраженный в молекулах АТФ, велик и суммарно составляет от 32 до 34 молекул АТФ на одну исходную молекулу глюкозы.

10. Дыхание, его биологическая роль, энергетическая ценность. Дыхание является универсальным физиологическим процессом, присущим всем живым организмам: бактериям, животным, растениям.

У растений дыхание выполняет две важные биологические функции. Во-первых, оно обеспечивает растение энергией в форме АТФ. Во-вторых, дыхание является многоэтапным процессом, в ходе которого образуются многочисленные промежуточные вещества, которые сами по себе представляют ценность для метаболизма растений. Они направляются на те или иные биохимические реакции. Эта функция дыхания может быть определена как создание метаболического фонда растения.

Суммарное уравнение процесса дыхания имеет следующий вид: Это уравнение, которое показывает только начальные и конечные продукты процесса, свидетельствует, что дыхание является окислением органических веществ, в ходе которого сложное органическое вещество распадется до углекислого газа и воды с получением химической энергии.

При дыхании происходит распад органических веществ, и поэтому за биохимической сути дыхания противоположное фотосинтеза. Итак, продукция фотосинтетического процесса расходуется по двум каналам: основная часть образованных при фотосинтезе органических веществ направляется на строительство самого тела растения, а другая (меньшая чаще) включается в дыхательный процесс для освобождения связанной в этих веществах энергии.

Энергия, которая высвобождается в процессе дыхания, частично выделяется в виде тепла, а часть - накапливается в виде химической энергии, которая связывается и сохраняется в форме АТФ. Этот процесс называют окислительным фосфорилированием . Ему соответствует уравнение: Синтез АТФ, их зарядка энергией - это основная функция дыхательного процесса. При дыхании расходуются органические вещества, и вес растения уменьшается. Так, например, если зерно кукурузы при посеве ва жить0,529 г, то после двух дней прорастания его вес равен всего 0,290 г. За это время оно тратит на дыхание почти 45% запасных питательных веществ.

Дыхание обуславливает и изменение состава воздуха вокруг растения. Количество кислорода снижается (он расходуется при дыхании), а количество Пути затраты энергии запасается растениями в молекулах АТФ углекислого газа возрастает (при дыхании он выделяется). Связано дыхания и с производством тепловой энергии. Обычно ее выделяется немного, но при дыхании прорастающих семян количество выделенного тепла может быть настолько большой, что семена нагреваться до температуры 60-90 ° С.

11. Понятие о хемосинтезе. Хемосинтез - процесс образования органических соединений с неорганических благодаря энергии, которая высвобождается при преобразовании неорганических соединений. Явление хемосинтеза открыл в 1892 году российский микробиолог С. М. Виноградский. Этот процесс осуществляют хемоатотрофни бактерии: нитрифицирующие бактерии (например, бактерии родов Nitrosomonas, Nitrosococcus), железобактериями (например, рода Geobacter, Gallionella) и сиркобактерии (бактерии родов Desulfuromonas, Desulfobacter, Beggiatoa).

Соседние файлы в предмете Биология