Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

86

.pdf
Скачиваний:
1
Добавлен:
07.06.2023
Размер:
8.14 Mб
Скачать

Chapter 1. Absolute stability and Aizerman’s problem of one-dimensional regulated systems

Since matrices

A,

A ( ), 0

 

0

<

0

are Hurwitz matrices, then, by definition 1,

 

 

 

1

 

 

 

 

 

the trivial solution

x(t) 0,

t I of the system (1.1), (1.2) is absolutely stable.

 

 

 

 

When 0

= 0 , > 0 is an arbitrarily small number, then all the conditions

of definition 3 are satisfied, therefore, in the sector [0,

0

] Iserman's problem has a

 

 

 

 

 

 

 

 

 

 

solution. The theorem is proved.

Iserman's problem. The question arises: is it possible to single out a class of controlled systems for which the Iserman problem has a solution without resorting to checking the conditions of absolute stability from Theorem 6?

Theorem 7. Let the following conditions be satisfied:

 

1.

Matrices A are Hurwitz matrices, function

( )

0

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

There is a row vector

= ( 1, , n )

such as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 2

B = 0,

 

n 1

B = 1;

 

 

B = 0, AB = 0, , A

 

= A

 

3.

Matrix rank R =

 

*

 

 

* *

 

 

*n 1

*

is equal to

n;

 

 

 

 

 

 

 

 

, A

, , A

 

 

 

 

 

 

 

 

 

4.

The conditions of Theorems 2-4 are satisfied, where N0 0, N1 0, N2 > 0, , Nn > 0.

 

Then in the sector [0, 0

] Iserman's problem has a solution, where 0 = 0 ,

> 0 is an arbitrarily small number, the value 0

 

is the limiting value of the Hurwitz

matrix

A ( ) = A B S,

0

0

 

0

.

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. Let the conditions of the theorem be satisfied. Then the improper integral

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

N y2

 

 

 

 

y2

 

 

 

 

 

 

 

 

I =

( (t)) (t)dt =

 

[N

N

n

]dt l = c, | l |< , | c |< ,

1

 

 

 

 

 

0

 

 

1 1

 

 

 

n

 

1

 

1

 

 

 

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consequently,

 

 

 

 

 

 

 

 

 

 

 

[N

2

N y

2

N

2

]dt = c1 l1

| c1

| | l1 |< .

 

 

y

 

0

 

1

1

n

n

 

 

 

0

 

 

 

 

 

 

 

 

 

 

(1.29)

 

By the hypothesis of the theorem N0

0, N1 0, , Nn

> 0.

Then from (1.29)

for

N

> 0 it follows that

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[N0 2

N1 y12 Nn yn2 ]dt <

.

(1.30)

 

 

0

 

 

 

 

 

Further, repeating the proofs of Theorem 6, from (1.30) we have lim y(t) = 0. As

 

 

 

 

 

 

t

(t) = 1 y1 (t) n yn (t), t I ,

then

lim (t) = 0. Then

lim

( (t)) = 0 due to

 

 

 

 

t

t

21

Lectures on the stability of the solution of an equation with differential inclusions

continuity of the function

( ).

In this case, the value

0

is determined from the

 

Hurwitz condition for the matrix

A B S, consequently,

0

= 0 . In the sector

[0, 0 ] Iserman's problem has a solution

Consider the case when

N = 0.

In this case, inequality (1.30) can be written as

 

1

 

 

 

 

 

 

 

 

 

[N

2

 

2

(t) N

2

(t)]dt < .

y

(t) N y

y

 

2

2

3

3

n

n

 

0

 

 

 

 

 

 

 

(1.31)

 

It follows from (1.31) that

lim

y (t) = 0, , lim

 

y

(t) = 0.

From equation (1.30)

 

 

 

 

 

 

 

 

 

 

 

 

t

2

 

 

 

 

t

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for

t ,

we get

 

lim

y (t) = lim

y (t) =

0,

lim

y

 

(t) = lim

y

(t) = lim

 

y (t) = 0, ,

 

 

 

 

 

 

 

 

t

1

t

 

 

2

 

 

t

2

 

 

 

t

1

 

 

 

t

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

y

 

 

(t) = lim

y

(n 1)

(t) = lim

y

 

(t) = 0.

 

Let lim

 

y (t) = y

.

 

 

Then from the last

n 1

 

 

n

 

 

 

 

t

 

 

t

1

 

 

 

t

 

 

 

 

 

 

t

 

1

 

1*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

equation (1.4) for

t ,

we get

 

0 = a

y

(

*

),

where

*

= lim

(t) = y

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1*

 

 

 

 

 

 

 

 

t

 

1 1*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

*

)

. This is only possible when

*

= 0, y

 

 

= 0. Consequently, lim y(t) = 0

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1*

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and according to the proof above in the sector

[0,

0

]

Iserman's problem has a solu-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion. The theorem is proved.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that the quantities

Ni

= Ni (a0 , , an 1

, 1, , n ), i = 0, n ,

therefore, the fulfillment of inequalities N0

0, N1

 

0, N2

> 0, , Nn

 

> 0 depends

on the Hurwitz matrix

A

and vector

S = (s

, , s

).

1

n

 

As

A = R

* 1

*

,

 

AR

A B S = R

* 1

*

,

 

( A B S)R

then matrices

A,

A B S

are similar to matrices

A,

A B S.

Consequently, the Hurwitz conditions for the matrix

 

replaced by the Hurwitz conditions for matrices

A, A B S

 

 

quently, implementation of inequalities

N0

0, N1 0, N2

> 0,

A, A B S

can be

 

respectively. Conse-

, Nn

> 0

depends

on the Hurwitz matrix

A

and vector

S = SR* 1.

Lecture 5.

Solution of a model problem in the main case

The constructiveness of the proposed method for determining the conditions of absolute stability and solving the Aizerman problem will be shown using an example.

The differential equation of the regulated system has the form

̇ =

+

,  ̇ = −2

− 1.03

− 0.03

− 0.75 ( ),

 

1

1

 

2

2

1

2

 

3

 

 

(1.32)

̇ = −0.01

− 1.01

− 0.25 ( ),   =

+

,   ( ) .

 

3

 

2

 

3

 

 

2

 

3

0

 

22

Chapter 1. Absolute stability and Aizerman’s problem of one-dimensional regulated systems

For this example, the matrix

A

, vectors

B,

S are equal to:

1

1

0

0

 

= (−2

−1.03

−0.03) ,    = (−0.75) ,    = (0

1 1),    = 1,   = 3.

0

−0.01

−1.01

−0.25

 

1. Nonsingular transformation. The characteristic polynomial of the matrix is equal to:

( ) = | 3 − | = 3 + 1.04 2 + + 0.98 = 0 = 3 + 2 2 + 1 + 0,

A

where 0 = 0.98, 1 = 1, 2 = 1.04. Matrix

 

A

is a Hurwitz matrix.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The characteristic equation of the matrix

 

A B S

is equal to:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1( ) = | 3 − − | = 3 + (1.04 + ) 2 + + (0.98 − 0.5 ) = 0.

 

 

 

 

 

Matrix

A B S

is a Hurwitz matrix if 0 ≤ < 1.96 = 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As

 

 

0;

2

 

 

 

 

 

 

0,

2

B = 1.

 

 

4

;

2

;2

 

 

 

=

3

; 2 , then B = 0, AB =

A

Vectors A =

3

3

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

2

 

0;

2

; 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

3

. Matrix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

4/3

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R =

 

2/3

2/3

2/3

 

| R |=

32

0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the rank of the matrix R is equal to

relative to variables

y = ( y

, y

, y )

has a form:

 

 

1

2

3

 

̇ =

,  ̇ =

,  ̇ = −0.98

1

2

2

3

3

1

2

n = 3.

The equation of motion

− 1.04 3 + ( ),

The row vector

S = (0,1,1)

is represented in the form

S = A A

.

 

 

2

 

1

2

3

 

From here

(t) =

1

y

 

2

2

 

 

 

 

 

where

we find

 

 

=

 

1

,

 

 

= 0,

 

 

= 1. Then =

1

y

y .

Derivative

 

 

 

 

3

 

 

 

 

 

 

1

 

2

 

 

 

2

 

 

 

 

 

 

 

2

 

1

3

 

(t) (t),

where (t) = y3 (t). As a result, we have

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= Ay B ( ),

= S y, ( ) 0 ,

 

 

 

 

 

(1.33)

 

 

0

 

 

 

1

 

 

 

0

 

 

 

 

0

 

 

 

1

 

 

 

 

= ( 0

 

 

 

0

 

 

 

1

),   

 

= (0) ,   

 

= (

 0 1).

 

 

 

 

 

 

 

 

 

 

 

 

−0.98

 

−1

 

 

−1.04

 

 

1

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

Lectures on the stability of the solution of an equation with differential inclusions

2. Improper integrals. The identities follow from (1.33):

( ( )) = ( ) + 0.98 1( ) + 2( ) + 1.04 3( ),    ,

(1.34)

(t) = 12 y1 (t) y3 (t), (t) = 12 y2 (t) (t), t I , (t) = y3 (t), t I.

Then

 

 

 

 

 

 

= ∫ ( ( )) ̇( ) = ∫

[− 2( ) + 0.5 2( ) + 0.5 2( )] +

1

 

 

 

 

 

2

3

 

0

 

 

0

 

 

 

 

 

 

d

 

( )

 

 

 

 

1

 

( )d = c,

| c |< .

 

 

 

 

dt

[F (t)]dt =

 

 

 

0

 

(0)

 

 

 

 

 

 

where

N

=

1

 

where

( ) = [0.245 2 + 0.98

 

+ 0.75 2

− 0.5

 

− 0.52 2], t I

1

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

2

 

 

 

 

2

3

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0, 2 = 0.5, 3 = 0.5;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( (t))]dt

=

 

 

 

 

(t) M y

 

(t)

 

 

= [ ( (t)) (t)

 

 

 

 

[M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

 

 

 

 

 

 

2

 

2

 

 

2

 

 

1

 

 

 

 

1

0

 

 

 

 

 

 

 

 

0

 

 

1 1

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

 

 

 

 

 

 

 

 

 

M

 

y

2

(t)

M

 

y

2

(t)]dt

 

 

 

dt,

 

 

 

 

 

 

 

 

2

 

3

 

 

 

 

F (t)

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

3

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

=

 

1

,

= −0.9604

 

−1 + 0.49

,

= 1.0384

−1

0

0

 

 

 

1

 

1

 

 

 

 

 

 

 

1

0

 

 

 

1

 

2

 

 

1

 

0

, N

0

= 1,

 

 

+ 0.46 1,

3

= 0.9184 1 0−1

 

 

I3

= [

 

0

− 1.04 1;

 

y

0

1

1

F (t) =

2

 

 

 

 

2

y

2

 

 

*

(t)F y(t),

y

 

 

 

2

 

3

y ]dt =

 

 

3

t I.

 

 

 

 

 

 

 

(t) y

(t)

[

 

 

 

2

 

2

 

0

 

1

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 y2

(t)

3 y3

(t)]dt

 

 

F3 (t) dt,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

dt

 

 

 

 

 

 

 

 

 

 

where

=

2

,

=

2

,

=

2

2

 

,

=

2

 

2

 

 

 

,

F

*

(t)F y(t),

t I.

0

1

2

3

3

0

2

= y

 

0

 

1

 

2

 

 

1

3

 

 

 

 

 

 

3

 

3

 

3. Absolute stability. As follows from formula (1.28), we have the inequalities:

 

 

 

 

 

N

0

M

0

0 :

 

2

 

1 2 0;

 

 

(1.35)

 

 

 

 

 

2

 

 

 

0

 

 

 

1

0

0

 

 

 

 

 

 

 

 

 

− Γ

 

> 0: 0.9604

−1 − 0.49

2

> 0;

(1.36)

 

 

2

1

 

 

 

1

1

 

 

 

1

 

0

 

1

 

1

 

 

 

 

 

− − Γ

 

> 0: 0.5

 

− 1.0384

−1

− 0.46

2

+ 2

> 0;

(1.37)

2

2

2

2

 

 

 

 

2

 

1

0

 

1

 

2

 

1

3

 

24

Chapter 1. Absolute stability and Aizerman’s problem of one-dimensional regulated systems

 

 

 

 

 

− Γ

 

> 0: 0.5

2

− 0.9184

−1 + 1.04

 

2 + 2

 

> 0.

 

(1.38)

 

 

 

2

 

3

3

 

3

 

 

 

 

 

 

 

 

 

 

 

 

1

0

 

 

 

1

 

 

3

 

0

2

 

 

 

 

 

 

 

 

 

Solving the system of algebraic equations (1.35)-(1.38) we find the limiting value

 

 

= 1.24 when

 

0

=

2

= 0,

 

= 3.514739229024956

2,

 

= 1.571428571428574 ,

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

3

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

= −1

= 2.834467120181413 2.Thus, for example

(1.32), the value

0

= 1.24 − ,

2

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

> 0

is an arbitrarily small number. Define the value

 

0

from the Hurwitz condition

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the matrix

A1( ) = A B S,

0 <

0 .

The characteristic equation of the matrix

A B S

is equal to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

( ) = |

− − | = 2 + (1.04 + ) 2 + + (0.98 − 0.5 ) = 0.

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It follows that the matrix

A B S

is a Hurwitz matrix if 0 ≤ < 1.96 = 0.

 

 

 

 

 

 

 

 

Notice that 0

= 1.24 − < 0 = 1.96. Consequently, in the sector

[0,

0

]

 

Aizer-

 

 

 

 

 

 

 

man's problem has no solution.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the absolute stability of the equilibrium system (1.32), when the func-

tion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) 0

 

 

 

 

 

 

 

 

 

1

1

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

= { ( ) C(R

, R )/0 ( )

 

 

, (0) = 0, , R }.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unlike inclusion ( ) 0

, function

( )

0

is not limited. The ratio of the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

 

 

 

 

 

 

 

 

 

 

~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

input transfer function

to the output

 

is equal to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) = ( − )−1 =

 

 

 

 

2 − 0.5

 

 

 

 

 

 

= −

̃

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

3 + 1.04 2 + + 0.98

 

 

̃( ̃)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

p

 

 

 

 

 

 

 

 

 

 

 

 

~

 

~

~

 

are function images

( ), ( (t)), t I

is a complex variable, ,

 

 

( )

respectively.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the frequency condition of V.M. Popov [15] the value of

 

0

is de-

 

 

 

 

termined from the condition

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

Re(1 i q)W (i ) > 0, < < ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) = ( ) + ( ) =

 

 

1.04 2 − 0.46 − 0.49

 

 

 

 

 

+

 

 

 

 

 

 

 

3

 

2

− 1.0384 + 0.9604

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

− 0.9184

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

− 1.5 + 0.5

 

 

 

 

, = 2

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

2

− 1.0384 + 0.9604

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− 0.9184

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q

is a real number.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modified

frequency

 

response

 

W* (i ) = X iY , X = ReW (i ), Y = ImW (i ).

For variables X ,Y the frequency condition of V.M. Popov will be written as X = qY 0 1 > 0 for all , 0 < . As

25

Lectures on the stability of the solution of an equation with differential inclusions

=

 

1.04 2 − 0.46 − 0.49

 

, =

 

2 − 1.5 + 0.5

,

3

2

− 1.0384 + 0.9604

3

2

− 1.0384 + 0.9604

 

− 0.9184

 

 

− 0.9184

 

then the values = 2 0 for which Y = 0, are equal to 1 = 0, 2 = 0.280776. For these values 1, 2 , values ( 1) = −0.51020408, ( 2) = −0.868396526. Note that the value 0−1 < −0.868396526. Then 0 < 1.1515476744 < 1.24, where the value 0 = 1.24 is obtained by the method proposed above.

To construct a modified partial characteristic, the values of X ( ), Y ( ) : can be calculated:

1.0 = 0, (0) = −0.51020408, (0) = 0;

2.= 0.05, (0.05) = −0.56316, (0.05) = 0.022;

3.= 0.1, (0.1) = −0.6196, (0.1) = 0.04;

4.= 0.15, (0.15) = −0.6802, (0.15) = 0.0481;

5.= 0.2, (0.2) = −0.74, (0.2) = 0.0438;

6.= 0.25, (0.25) = −0.8194, (0.25) = 0.0237;

7.= 0.28, (0.28) = −0.86, (0.28) = 0.000723;

8.= 0.280776, (0.280776) = −0.868396526, (0.280776) = 0;

9.= 0.3, (0.3) = −0.9, (0.3) = 0.02;

10.= 0.4, (0.4) = −1.098, (0.4) = −0.225;

11.= 0.7, (0.7) = −2.39, (0.7) = −5.75;

12.= 10, (10) = 0.11, (10) = −1.28;

13.= ∞, (∞) = 0, (∞) = −1.

Based on these data, a modified frequency response is constructed and values are found 0−1 = 0.868, = 2.2727. Then 0 = 1.152 < 1.24, therefore, the proposed method allows us to select in the space of system parameters the region of absolute stability wider than the known results.

Iserman's problem. Consider the equations of the following form

̇=

+

, ̇= −2 − 1.03

− 0.03 − 0.75 ( )

 

 

1

1

2

2

 

1

 

 

 

2

 

3

 

 

 

 

̇= −0.01

− 1.01

 

− 0.25 ( ), ( ) Φ , = [0, ∞), (1.39)

 

3

 

 

2

 

3

 

 

 

 

 

 

0

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) = −

2

 

 

0.02

2 − 0.02 3, [0, ∞).

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

3

 

3

 

 

Since matrices R* , R* 1

are respectively equal:

 

 

 

 

 

 

 

0

2/3

 

2

 

3/4

3/4

0

 

 

 

R* =

 

4/3

2/3

 

2

,

R* 1 =

3/4

0

3/4

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

2/3

 

2

 

 

1/4

0

1/4

 

 

 

 

 

 

 

 

 

then the transformed system has the form

26

Chapter 1. Absolute stability and Aizerman’s problem of one-dimensional regulated systems

̇= , ̇=

, ̇= −0.98

− 1.04

+ ( ),

 

1

2

2

 

3

3

1

2

3

 

 

( ) = 0.5 1

+ 0.5 2

+ 0.01 3, ( ) Φ0.

(1.40)

Notice that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A = R* AR* 1 , B = R* B, S = SR* 1 ,

 

where = (− 2

 

0.02

 

 

 

 

 

 

 

 

 

 

; −

; −0.02), = (0.5; 0.5; 0.01).

 

3

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For (1.40) the identities are true:

( ( )) = ( ) + 0.98 1( ) + 2( ) + 1.04 3( ), ,

( ) = 0.5 1( ) + 0.5 2( ) + 0.01 3( ), ,̇( ) = 0.5 2( ) + 0.5 3( ) + 0.01 ( ), ,

where

(

)

 

.

As matricies

0

 

01

= ( 0 0

−0.98 −1

A, B,

are equal to:

S

00

1), = (0) , = (12 12 0.01), −1.04 1

then the characteristic polynomial of the matrix

A B S

is equal to

 

 

 

 

 

 

( ) = |

 

 

 

 

 

 

 

 

1

 

| = 3 + (1.04 − 0.01 ) 2 + (1 − 0.5 ) + (0.98 − 0.5 ).

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matrix

A B S

is a Hurwitz matrix if 0 ≤ < 1.96 = 0.

 

 

 

 

 

 

 

 

 

 

Improper integral

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= ∫ ( ( )) ̇( ) = ∫

[0.01 2( ) + 0.01 2

( ) + 0.01 2

( )] +

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

 

 

 

 

 

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(∞)

 

 

 

 

 

 

 

 

 

 

 

+ ∫

 

 

 

( ( ))

= ∫

( ) =

, | | < ∞,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

1

(0)

 

 

1

1

 

 

 

 

( ) = 0.495 2 + 0.015 2

 

 

+ 0.005 2, = 0.01,

 

where

 

+ 0.5

 

= 0, = 0.01,

 

 

1

 

 

 

 

1

2

1

3

 

3

0

1

2

3 = 0.01. From here it follows that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01 2( ) < ∞, ∫ 0.01 2( ) < ∞, ∫

0.01 2( ) < ∞.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

3

 

 

 

 

0

 

 

 

 

 

 

 

 

0

 

 

 

0

 

 

 

Consequently,

lim y

2

(t) = 0,

t

 

 

 

lim y

(t) = 0.

t

3

 

 

 

Then lim y

(t) = lim y

 

(t) = 0,

t 1

t

2

 

lim y

 

(t) = lim

y (t) = 0,

lim ̇( ) = 0, lim ̇( ) = −0.98 lim

( ) + lim ( ( )),

t

2

 

t

3

→∞ 3

→∞ 3

→∞ 1

→∞

lim ( )

= 0.5 lim ( ).

 

 

 

 

→∞

 

 

 

→∞ 1

 

 

 

 

Notice that

y3 (t), t I is a uniformly continuous function due to the fact that the

functions

y1 (t), y2 (t), y3 (t), ( (t)), t I are uniformly continuous functions. Then

27

Lectures on the stability of the solution of an equation with differential inclusions

condition

lim y3 (t) =

 

t

 

[14; § 21,

lemma

0

1].

entails

Let

lim y

(t) = 0

 

by virtue of the Barbalat lemma

t

3

 

 

 

 

 

lim y (t) = y

.

Then 0 = −0.98

+ (0.5

) =

t

1

1*

 

1

1

 

 

 

 

 

 

 

−1.96(0.5 ) + (0.5 1 ). This equation has a unique solution y* = 0. So, y1(t) 0,

y2 (t) 0, y3 (t) 0 when t .

As all the conditions of Theorem 7 are satisfied, then in the sector [0,1.96 − ],> 0 is a sufficiently small number, for system (1.39) the Iserman problem has a solution.

1. We study the absolute stability of the equilibrium position of the system (1.40) by applying Theorem 6. To do this, we calculate improper integrals

2 = − ∫ [ ( ( )) 1 ( ) − 1 0−1 2( ( ))] =

0

=∫ [ 1 0−1 2( ) + (−0.49 1 +

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 0.9604

−1) 2( ) + (0.0298

 

− 1.0384

−1) 2( ) + (0.4896 −

 

 

 

 

 

 

1

0

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

0

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−0.9184 −1)] + ∫

 

[

 

( )] ≤ 0;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

= [ (t)

 

y (t)

 

 

y

 

 

(t)

 

 

y

 

 

2

dt =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

1

2

 

 

3

 

(t)]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

2

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(t)

 

y

 

 

(t) (

 

 

 

2

 

) y

 

 

(t) (

 

 

 

2

 

) y

 

(t)]dt

 

 

= [

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

2

 

2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

1

1

 

 

 

 

 

 

 

2

 

 

 

 

 

1

3

 

 

 

 

2

 

 

 

 

 

 

 

 

3

 

 

 

 

0

 

2

 

3

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F 3 (t)]dt 0;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

(0.01 2

+ 0.01 2

+ 0.01 2) +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 1

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(∞)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) = , | | < ∞.

 

 

 

 

 

 

 

 

 

 

 

+

 

 

∫ [

 

 

 

 

( )]

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

0

 

 

1

 

 

 

 

 

 

 

 

2

 

(0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As follows from formula (1.28), the inequalities

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− Γ

 

≥ 0: 0.01

2

+

 

−1 2 ≥ 0;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

0

 

 

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

 

 

 

 

 

 

0

 

 

−1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− Γ

 

> 0: − 0.49

 

 

+ 0.9604

 

 

 

> 0;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

1

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

0

 

 

1

 

−1

2

 

 

 

 

 

 

 

 

 

 

 

 

− Γ

 

> 0: 0.01

2

+ 0.0298

 

− 1.0384

 

 

+ 2

 

 

> 0;

 

2

2

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

0

 

 

2

 

 

 

 

1

3

 

 

 

 

 

− Γ

 

> 0: 0.1

+ 0.4896

− 0.9184

 

−1

2

 

+ 2

 

 

> 0,

 

2

3

 

 

3

 

 

 

 

3

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

0

 

 

 

 

3

 

 

 

 

 

0

2

 

 

 

where = 0.01

,

 

= 0,

= 0.01

 

,

 

= 0.01

, −

= −1

, −

= −0.49

+

 

 

0

 

 

 

 

2

 

 

1

 

 

 

 

 

2

 

 

 

 

 

 

2

 

3

 

 

 

 

 

 

 

 

 

 

 

3

 

 

0

 

 

 

 

 

1

0

 

 

 

 

1

 

 

 

 

 

 

1

 

+ 0.9604

−1, −

 

= 0.0298

− 1.0384 −1

, −

 

 

= 0.4896

 

 

− 0.9184

−1, Γ

=

2,

 

 

1

0

 

 

 

2

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

0

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

0

 

0

 

0

Γ = 2

, Γ

= 2 − 2

, Γ

= 2 − 2

 

,

2

is any number.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

2

 

 

2

 

 

 

 

1

 

3

 

3

 

 

 

 

3

 

 

 

0

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

Chapter 1. Absolute stability and Aizerman’s problem of one-dimensional regulated systems

 

Find the

limit

value

 

 

 

from

equalities:

 

0.01

+

−1 2

= 0; −0.49 +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

2

1

 

0

 

 

 

 

0

 

 

 

1

+ 0.9604 −1

2

= 0; 0.01

+ 0.0298

− 1.0384 −1

2

+ 2

= 0; 0.01 +

 

1

 

 

0

 

1

 

 

 

 

 

2

 

 

 

 

 

 

 

1

 

 

 

 

1

0

2

 

 

 

 

1

 

3

 

 

 

2

+ 0.4896

− 0.9184 −1 2

+ 2

= 0.

From here when

1

= 0,

 

 

= 0, −1 = 1.96

 

1

 

 

 

 

 

 

 

1

0

 

 

3

 

 

 

 

 

0

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

0

we

get:

 

 

0.01

 

= − −1

+ 2; −0.49

 

 

+ 0.9604 −1 = 0;

−1

= 0.5102040816,

 

 

 

 

 

 

 

 

2

 

 

1

 

0

 

 

 

0

 

 

 

 

1

 

 

 

 

1

0

 

 

 

 

 

 

0

 

 

 

 

 

 

 

− 1.0102

+ 2

= 0, −0.4891755

 

+ 2 2

= 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

0

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then

0

=

0

= 1.96,

= 0.9899 2

> 0, 2

= 0.51576371 2,

 

= 0.4949489 2,

 

 

 

 

 

 

 

 

 

 

 

 

!

 

 

 

 

 

 

 

0

 

 

 

3

 

 

 

 

 

 

 

 

 

 

0

 

 

2

 

 

 

0

1

= 0, 2

 

= 0.

These results confirm that in the sector [0,1.96 − ] Iserman problem

has a solution.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. We study the absolute stability of the equilibrium position of the system (1.40)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

~

by applying the theorem of V.M. Popov [15]. Input transfer function

( ) to output

~

or system (1.40) is equal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) = ( −

 

)−1 =

 

 

−0.01 2 − 0.5 − 0.5

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

3 + 1.04 2 + + 0.98

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

0

 

 

 

 

 

 

 

 

 

0

 

 

 

2

 

 

 

 

 

0.02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= (−2

 

−1.03

 

−0.03), = (−0.75), = (−

 

 

 

 

 

 

 

 

−0.02),

 

 

3

 

3

 

 

 

 

 

 

 

 

 

0

 

−0.01

 

−1.01

 

 

 

 

 

−0.25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is easy to verify that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

̃1( ) =

 

 

 

−0.75 − 0.75

 

 

 

 

̃( ̃), ̃2

( ) =

 

 

−0.75 2 − 0.75

 

 

 

̃( ̃),

 

 

3 + 1.04 2 + + 0.98

 

3 + 1.04 2 + + 0.98

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

̃3( ) =

 

 

−0.25 2

− 0.25

 

 

 

 

̃( ̃), ̃ + 1( ) ( ) = 0, ̃ = − 1( ) ̃( ̃) =

 

 

3 + 1.04 2 + + 0.98

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

0.02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01 2 + 0.5 + 0.5

 

 

 

 

 

 

 

 

= −

 

̃1( ) −

 

 

̃2( ) − 0.02̃3( ) =

 

 

 

 

̃( ̃).

 

 

3

3

 

3 + 1.04 2 + + 0.98

 

 

 

Frequency response W1() = ReW1() + iImW1(), where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

=

 

 

 

 

 

 

 

−0.54 2

+ − 0.49

 

 

 

 

 

, = 2,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

3 − 0.9184 2 − 1.0384 + 0.9604

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1( ) =

 

 

 

 

 

 

( 2

− 0.98 + 0.01)

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 − 0.9184 2 − 1.0384 + 0.9604

 

 

 

 

 

 

 

 

Modified frequency response

W* (i ) = X1 iY1,

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

=

 

 

 

 

 

 

 

−0.54 2

 

+ − 0.49

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 − 0.9184 2 − 1.0384 + 0.9604

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

=

 

 

 

 

 

 

 

3 − 0.98 2 + 0.01

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 − 0.9184 2 − 1.0384 + 0.9604

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

Lectures on the stability of the solution of an equation with differential inclusions

lues For

The value of

 

is determined from the condition

X

 

qY

1

> 0,

, 0. Va-

0

1

0

 

 

 

 

 

 

1

 

 

 

=

2

0 for which Y 0

are equal to = 0,

 

= 0.0103126,

 

= 0.9696874.

 

2

3

 

 

 

 

1

1

 

 

 

 

 

these

values

 

1, 2 , 3

values 1( 1) = −0.51020408, 1( 2) = −0.50557,

 

(

) = −16.4071225. Value

−1

<

(

) = −16.4071225. Then

 

0

< 0.060949 <

1

3

 

0

1

3

 

 

 

< 1.96, where 0 = 1.96 is obtained above. It follows that the frequency condition of V.M. Popov is not effective for studying the absolute stability of regulated systems with limited resources.

To build a modified frequency response calculated values

X1 ( ), Y1 ( ) :

1.= 0, 1(0) = −0.51020408, 1(0) = 0;

2.= 0.01, 1(0.01) = −0.50535, 1(0.01) = 0.000003158;

3.= 0.0103126, 1(0.0103126) = −0.50557, 1(0.0103126) = 0;

4.= 0.02, 1(0.02) = −0.5006, 1(0.02) = 0.000196;

5.= 0.05, 1(0.05) = −0.487, 1(0.05) = 0.002;

6.= 0.1, 1(0.1) = −0.466, 1(0.1) = 0.009249;

7.= 0.5, 1(0.5) = −0.37, 1(0.5) = 0.34165;

8.= 0.8, 1(0.8) = −0.66, 1(0.8) = −1.988;

9.= 0.9, 1(0.9) = −2.505, 1(0.9) = −5.084;

10.= 0.96, 1(0.96) = −14.75, 1(0.96) = −4.7115;

11.= 0.9696874, 1(0.9696874) = −16.4071225, 1(0.9696874) = 0;

12.= 0.98, 1(0.98) = −14.83, 1(0.98) = 5.08;

13.= 1, 1(1) = −8.3333, 1(1) = 8.3333;

14.= 2, 1(2) = −0.20249, 1(2) = 1.277;

15.= ∞, 1(∞) = 0, 1(∞) = 1.

Based on these data, a modified frequency response is constructed and values

0 = 0.058823, = 0.285714 are found.

The inefficiency of the frequency method of V.M. Popov for studying the absolute stability of the system (1.39) is explained by the following factors: firstly when deriving the frequency condition, the boundedness of the improper integral 1 is not taken into account; secondly, the boundedness of the system solutions (1.40) is not used; thirdly, the properties of the improper integral 3 are not taken into account.

Lecture 6.

Absolute stability and the Iserman problem in a simple critical case. Formulation of the problem. Nonsingular transformation

Statement of the problem. The equation of motion of controlled systems in a simple critical case has the form:

x = Ax B ( ), = ( ), = Dx E ,

(1.41)

x(0) = x0 , (0) = 0 , t I = [0, ),

where

A, B, D, E are constant matrices of n n, n 1,1 n,1 1 orders, respectively,

 

 

 

 

matrix

A is a Hurwitz matrix, i.e. Re j ( A) < 0, j = 1, n, j ( A) are eigenvalues of the

matrix

А.

30

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]