Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
3
Добавлен:
20.04.2023
Размер:
936.2 Кб
Скачать

21

теллектуальными" и могут быть легко отредактированы как с помощью "ручек", так и специальных диалоговых окон.

ArchiCAD (http://www.archicad.ru/) - программное обеспечение компании Graphisoft

является на данный момент одной из лучших систем архитектурно-строительного проектирования, которое с помощью концепции Виртуального Здания (Virtual Building) реализует уникальную технологию Информационного Моделирования Зданий (Building Information Modeling - BIM). ArchiCAD - мощная среда 3D-моделирования для работы с объектами по современным технологиям. Система разработана специально для архитекторов: инструментарий программы позволяет строить чертежи и модель из привычных объектов (стен, колонн, перекрытий и т.д.), а интерфейс программы интуитивно ясен. При работе в ArchiCAD не просто создаются отдельные чертежи, а разрабатывается полный набор документации по проекту в одном файле.

Российская фирма Еврософт предлагает ArCon "Архитектура и дизайн" (http://www.eurosoft.ru/) - программный продукт для архитекторов, дизайнеров, специалистов в области недвижимости, предназначенный для профессионального проектирования и оформления домов, квартир, помещений и внутренней обстановки. Особая популярность программы ArCon обеспечена преимуществами в скорости создания проекта и качественной архитектурной визуализации.

Архитектурно-дизайнерский пакет ArfaCAD (http://www.viks-cad.ru/), разработанный в России, позволяет оперировать цельными 2D- и 3D-объектами с архитектурно-строительной терминологией: стены, окна и двери, витражи, лестницы, кровли, перекрытия, ограждения, массивы грунта, воды и т.д.

Программа Allplan (http://www.nemetschek.com/) немецкой фирмы Nemetschek - это программное решение для всех фаз жизненного цикла строительного проекта: с самого раннего наброска от руки до проектной документации. Allplan, основанный на объектноориентированной базе простых 3D-объектов, создает и поддерживает взаимосвязь между 2D- и 3Dчертежами, разрезами, проекциями и т.д. Все эти виды - просто различные представления одних и тех же трехмерных объектно-ориентированных данных. В работе возможно использовать тот вид или виды, которые наилучшим образом подходят к особенностям стиля или привычкам конкретного пользователя. Allplan разработан специально для профессионалов в области именно строительного проектирования.

APM Civil Engineering (http://www.apm.ru/) - CAD/CAE система автоматизированного проектирования строительных объектов гражданского и промышленного назначения. Эта система в полном объеме учитывает требования государственных стандартов и строительных норм и правил, относящиеся как к оформлению конструкторской документации, так и к расчетным алгоритмам.

Современные фасады - это настоящие HighTechконструкции. Тот, кто проектирует и возводит фасады, должен считаться со статикой, термическими условиями и архитектурными аспектами. ATHENA (http://www.cad-plan.com/) не без основания является ведущей конструкторской программой для проектирования металлических и фасадных конструкций. Уже более 20 лет программа постоянно развивается и успешно применяется в металлоперерабатывающих фирмах, инженерных центрах и профессиональных учебных заведениях. ATHENA наиболее точно соответствует требованиям пользователя и является комплексным программным пакетом, содержащим все, что может облегчить задачи конструктора в его каждодневной работе.

Bocad-3D (http://www.bocad.ru/) - мощная пространственная CAD-система проектирования стальных и деревянных конструкций. Данная CAD-система представлена на рынке программных продуктов уже более чем 15 лет. При этом происходит постоянный процесс совершенствования системы в соответствии с пожеланиями конструкторов.

BricsCad Pro (www.brics-cad.ru) - отличный выбор для архитекторов, инженеров, конструкторов и для всех, кто создаёт или использует чертежи САПР. BricsCad обеспечивает непревзойдённую совместимость с AutoCAD, а также делает возможным применение сотен программ,

22

разработанных третьими фирмами. Любой человек, хорошо знакомый с AutoCAD, может сразу начать работу с BricsCad, без какого-либо обучения. Удобные возможности визуальной настройки пользовательского интерфейса, а также поддержка файлов AutoCAD, пользовательских меню, панелей инструментов, сценариев, снимков.

Система автоматизированного проектирования BtoCAD (http://www.btocad.ru/) разработана специально для инженеров, конструкторов и всех специалистов, работающих с CADприложениями. Технология, положенная в основу BtoCAD, позволяет осуществить полноценную поддержку формата DWG. Главной особенностью BtoCAD, по сравнению с остальным САПР приложениями является его не прихотливость к аппаратной составляющей компьютера. Системные требования программы подобраны таким образом, что BtoCAD можно запускать даже на проверенных временем компьютерах, а в купе с ценной BtoCAD представляет собой одним из самых выгодных предложений на текущем рынке САПР приложений.

CADdy (http://www.caddy.de/) (немецкая фирма ZIEGLER-Informatics GmbH) по функцио-

нальным возможностям занимает промежуточное положение между системами низкого и высокого уровней. Предназначена для решения комплексных интегрированных технологий от стадии проектирования до стадии производства. В настоящее время в состав CADdy входит свыше 80 модулей, охватывающих такие направления, как архитектура, строительство, геодезия, машиностроение, картография и городское планирование.

Система CATIA (http://www.catia.ru/) (Computer Aided Three-dimensional Interactive Application) - одна из самых распространенных САПР высокого уровня. Это комплексная система автоматизированного проектирования (CAD), технологической подготовки производства (CAM) и инженерного анализа (САЕ), включающая в себя передовой инструментарий 3D моделирования, подсистемы программной имитации сложных технологических процессов, развитые средства анализа и единую базу данных текстовой и графической информации. Система позволяет эффективно решать все задачи технической подготовки производства - от внешнего (концептуального) проектирования до выпуска чертежей и спецификаций.

DesignCAD 3D Max (http://www.designcad.com/) - легкая в использовании программа для

2D/3D моделирования. В приложении заложена возможность создания презентаций, анимации и твердотельного моделирования. С помощью этого приложения можно проектировать механические детали, 3D модели объектов, двигатели, чертежи печатных плат и др., все зависит от Вашего воображения и креативности. DesignCAD 3D Max - это универсальный инструмент САПР для начинающих и продвинутых проектировщиков.

DraftSight (http://www.3ds.com/) - открытое двухмерное решение САПР профессионального уровня для тех, кто хочет оптимизировать чтение, запись и обмен файлами DWG. DraftSight отличается простотой в использовании и занимает небольшой объем памяти.

Google SketchUp (http://www.sketchup.google.com/) - простой и удобный инструмент для со-

здания, обработки и презентации трёхмерных моделей. Позволяет быстро и качественно создавать практически любые построения различного уровня подачи - от драфт-эскиза, до готового проекта. Здания, мебель, интерьер, строительные сооружения и многое другое проектируется за считанные минуты. Кроме того, Google SketchUP предоставляет возможность создавать многостраничные документы и презентации; раскладывать и аннотировать множество масштабированных моделей на одной странице; создавать, документировать и делать презентацию проекта, используя один единственный чертёж.

GstarCAD (http://www.gstarcad.ru/) - это программа для создания чертежей в формате DWG/DXF, ставшем общепринятым стандартом. Она является не только достойной заменой AutoCAD, но и по соотношению цена/качество отличной альтернативой распространенным российским и зарубежным <аналогам автокад> и САПР, таким как Bricscad, Btocad, Nanocad, progeCAD, ZWCAD, Infrasoftcad. Благодаря применению в GstarCAD современных технологий производства систем проектирования, основанных на новейших разработках Open Design Alliance и ITC, САПР GstarCAD обеспечивает практически полную совместимость со всеми существующими САПР-системами и cad программами, использующими формат векторной графики DWG.

23

IronCAD (http://www.ironcad.com/) - это профессиональная система самого последнего поколения. Представляет собой полнофункциональный инструмент для разработчиков, которые хотят эффективно использовать рабочее время. В программе используются как классические методы параметрического моделирования, так и инновационный метод прямого редактирования. Система IronCAD дает пользователю мощнейший инструмент для оформления чертежей, избавляет от необходимости экспортировать геометрию в какие-либо другие продукты с потерей ассоциативной связи. По своим возможностям программа является достойным конкурентом таким САПР, как AutoCAD, SolidWorks, T-Flex, КОМПАС 3D, набирая быстрый ход распространения и приобретая своих поклонников и в России.

MicroStation (http://www.bentleysoft.ru/) - это профессиональная, высоко производи-

тельная система для 2D/3D - автоматизированного проектирования при выполнении работ, связанных с черчением, конструированием, визуализацией, анализом, управлением базами данных и моделированием. Обеспечивает практически неограниченными возможностями проектировщиков и конструкторов на платформах DOS, Windows и компьютерах различных типов.

nanoCAD (http://www.nanocad.ru/) - первая отечественная свободно распространяемая базовая САПР-платформа для различных отраслей. Разработкой занимались специалисты высокого уровня, зарекомендовавшие себя при разработке таких известных программ и прило-

жений к AutoCad, как ElectriCS, MechaniCS, Project Studio, Spotlight и многих других. Плат-

форма nanoCAD содержит все необходимые инструменты базового проектирования, а благодаря интуитивно понятному интерфейсу, непосредственной поддержке формата DWG и совместимости с другими САПР-решениями является лучшим выбором при переходе на альтернативные системы. У пользователей есть возможность обратиться за помощью или отправить запрос на доработку того или иного продукта и получить грамотную и профессиональную консультацию непосредственно от разработчика.

OmniCAD (http://www.omnicad.com/) - Система 2D проектирования, черчения и 3D по-

верхностного моделирования.

Система T-FLEX CAD 11 (http://www.tflex.ru/) - новое эффективное средство для комфортной работы конструктора. Включает в себя средства 2D-черчения, 3D-проектирования, модули конечно-элементного и динамического анализа. В новой версии САПР T-FLEX CAD реализовано более 200 усовершенствований, предлагающих пользователю целый набор инструментов, недоступных в других программах сходного назначения.

Pro/ENGINEER (http://www.pro-technologies.ru/) - является САПР верхнего уровня и охваты-

вает все сферы проектирования, технологической подготовки производства и изготовления изделия. Широкий диапазон возможностей аппарата трехмерного моделирования, высокое качество получаемого результата и устойчивость его к последующим изменениям сделали Pro/ENGINEER одним из лидеров CAD/CAM/CAE систем, а наличие прямого доступа в систему поддержки жизненного цикла изделия Windchill PDMLink переводит Pro/ENGINEER в разряд PLM-систем.

TurboCAD (http://www.turbocad.com/) - новейшее универсальное приложение для профессионального проектирования в формате CAD. Совмещенное 2D и 3D редактирование способно удовлетворить самых взыскательных пользователей. Полная мощь промышленного стандарта ACIS совмещается с поверхностным моделированием. TurboCAD Professional поддерживает двадцать пять самых распространенных форматов файлов, таких как AutoCAD DWG/DXF, MicroStation DGN, IGEN, 3DS, STL и прочее. Имеется возможность экспортиро-

вать Ваши проекты в MTX, HTML, JPG. TurboCAD Professional включает реалистический рендеринг, 3D моделирование с оболочками и лофтингом, работу с файлами AutoCAD, обучающие программы, возможность работы с сетью Internet. TurboCAD полностью настраивается, совместим с Microsoft Office и содержит встроенный Microsoft's VBA. Приложение также содержит Software Development Kit и Visual Basic Macro Recorder.

VariCAD (http://www.varicad.com/) - Система автоматизированного проектирования, главным образом предназначенная для инженерного проектирования. В дополнение к мощ-

24

ным инструментам 3D моделирования и 2D черчения, VariCAD содержит библиотеки стандартных механических деталей (ANSI, DIN) и все необходимые для них расчеты. Это всеобъемлющее CAD-решение позволяет проектировщикам быстро создавать, модифицировать и подсчитывать стоимость их моделей. Отличные характеристики, хорошая функциональность и простой, интуитивно понятный интерфейс.

ZWCAD (http://www.zwsoft.ru/) - 2D/3D система автоматизированного проектирования

ичерчения компании ZWSOFT. ZwCAD - выбор для архитекторов, инженеров, строителей и других специалистов, работающих в CAD/CAM технологиях, для которых важно соответствие индустриальным стандартам, простота и привычность интерфейса AutoCAD, стандартный набор необходимых инструментов в рамках разумного бюджета. Удобство работы обеспечивается привычным интерфейсом и возможностью импортировать в ZwCAD меню, созданных в AutoCAD. Команды и кнопки, соответствующие командам и кнопкам AutoCAD, позволяют быстро приступить к работе, потратив минимум времени на переобучение.

SCAD Office (http://www.scadgroup.com/) - система нового поколения, разработанная инженерами для инженеров и реализованная коллективом опытных программистов. В состав системы входит высокопроизводительный вычислительный комплекс SCAD версия 11.3, а также ряд проектирующих и вспомогательных программ, которые позволяют комплексно решать вопросы расчета и проектирования стальных и железобетонных конструкций. Система постоянно развивается, совершенствуются интерфейс пользователя и вычислительные возможности, включаются новые проектирующие компоненты.

КОМПАС (http://kompas.ru/) - система автоматизированного проектирования, разработанная российской компанией <АСКОН> с возможностями оформления проектной и конструкторской документации согласно стандартам серии ЕСКД и СПДС. Существует в двух версиях: КОМПАС-График и КОМПАС-3D, соответственно предназначенных для плоского черчения и трёхмерного проектирования.

Российские САПР

ADEM — САПР для конструкторско-технологической подготовки машиностроительных и металлообрабатывающих предприятий и программирования оборудования с ЧПУ. AutomatiCS — программный пакет, производства компании CSoft Development, предназначенный для автоматизации проектирования, реконструкции и эксплуатации систем контроля

иуправления (КИПиА, АСУТП), учета энергии, цепей вторичной коммутации.

bCAD — САПР по проектированию мебели, торгового оборудования и дизайну интерьеров. Существует также версия для инженерного проектирования и бесплатная студенческая версия

DipTrace — САПР для проектирования печатных плат. В пакет включено четыре программы: Schematic — разработка принципиальных схем; PCB Layout — разводка плат, ручная и автоматическая трассировка; ComEdit — редактор корпусов; SchemEdit — редактор компонентов.

ElectriCS — САПР, предназначенная для проектирования электрооборудования, применяемого в различных отраслях промышленности, производство компании CSoft

Development.

EnergyCS — предназначен для выполнения электротехнических расчётов при проектировании и эксплуатации электроэнергетических систем любой сложности, производство компании CSoft Development.

GeoniCS — линейка профессиональных программных продуктов компании CSoft Development, предназначенных для специалистов в области геодезии, геологии, землеустройства, проектирования генпланов.

IndorCAD — система проектирования автомобильных дорог компании ИндорСофт InfrasoftCAD — САПР на основе IntelliCAD от компании INFRASOFT

K3 — система твердотельного пространственного моделирования, разработанная нижегородскими учёными. (K3-Коттедж — это комплекс компьютерных программ для проектирования деревянных домов из оцилиндрованного бревна и профилированного бруса.

25

, K3-Мебель K3-Тент, K3-Ship)

MechaniCS — приложение к AutoCAD или Autodesk Inventor, предназначенное для оформления чертежей в соответствии с ЕСКД и др., разработчик CSoft Development

Model Studio CS ОРУ — программный продукт предназначен для разработки компоновочных решений в трехмерном пространстве открытых распределительных устройств, выполнения расчётов гибкой ошиновки, выпуска проектной и рабочей документации (чертежей, спецификаций и т. д.)

Геоинформационная система (ГИС) - это многофункциональная информационная система, предназначенная для сбора, обработки, моделирования и анализа пространственных данных, их отображения и использования при решении расчетных задач, подготовке и принятии решений. Основное назначение ГИС заключается в формировании знаний о Земле, отдельных территориях, местности, а также своевременном доведении нео б- ходимых и достаточных пространственных данных до пользователей с целью достижения наибольшей эффективности их работы.

Геоинформационные технологии (ГИТ) — это информационные технологии обработки географически организованной информации.

Основной особенностью ГИС, определяющей ее преимущества в сравнении с другими АИС, является наличие геоинформационной основы, т.е. цифровых карт (ЦК), дающих необходимую информацию о земной поверхности. При этом ЦК должны обеспечивать:

точную привязку, систематизацию, отбор и интеграцию всей поступаю¬щей и хранимой информации (единое адресное пространство);

комплексность и наглядность информации для принятия решений;

возможность динамического моделирования процессов и явлений;

возможность автоматизированного решения задач, связанных с анализом особенностей территории;

возможность оперативного анализа ситуации в экстренных случаях.

История развития ГИТ восходит к работам Р. Томлисона по созданию Канадской ГИС (CGIS), проводившимся в 1963-1971 гг.

Вшироком смысле ГИТ - это наборы данных и аналитические средства для работы

скоординатно привязанной информацией. ГИТ - это не информационные технологии в географии, а информационные технологии обработки географически организованной информации.

Существо ГИТ проявляется в ее способности связывать с картографическими (графическими) объектами некоторую описательную (атрибутивную) информацию (в первую очередь алфавитно-цифровую и иную графическую, звуковую и видеоинформацию). Как правило, алфавитно-цифровая информация организуется в виде таблиц реляционной БД. В простейшем случае каждому графическому объекту (а обычно выделяют точечные, линейные и площадные объекты) ставится в соответствие строка таблицы - запись в БД. Использование такой связи, собственно, и открывает столь богатые функци о- нальные возможности перед ГИТ. Эти возможности, естественно, различаются у разных систем, но есть базовый набор функций, обычно имеющийся в любой реализации ГИТ, например, возможность ответа на вопросы "что это?" указанием объекта на кар¬те и "где это находится?" выделением на карте объектов, отобранных по некоторому условию в БД. К базовым можно также отнести ответ на вопрос "что рядом?" и его различные модификации. Исторически первое и наиболее универсальное использование ГИТ - это ин- формационно-поисковые, справочные системы.Геоинформационные системы и технологии

Таким образом, ГИТ можно рассматривать как некое расширение технологии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относится к объектам, для которых важ-

26

ную роль играет их пространственное положение, форма и взаиморасположение, а следовательно, ГИТ во многих приложениях значительно расширяют возможности обычных СУБД, так как ГИТ более удобны и наглядны в использовании и предоставляют ДЛ свой "картографический интерфейс" для организации запроса к базе данных вместе со средствами генерации "графического" отчета. И, наконец, ГИТ добавляет обычным СУБД совершенно новую функциональность - использование пространственных взаимоотношений между объектами.

ГИТ позволяет выполнять над множествами картографических объектов операции, подобные обычным реляционным (JOIN, UNION, INTERSECTION). Операции этой группы называются оверлейными, так как используют в разных вариантах пространственное наложение одного множества объектов на другое. Фактически оверлейные операции обладают большим аналитическим потенциалом, и для многих сфер применения ГИТ являются основными, обеспечивая

решение прикладных задач (землепользования, комплексной оценки территорий и другие).

ГИТ предлагает совершенно новый путь развития картографии. Прежде всего, преодолеваются основные недостатки обычных карт: статичность данных и ограниченность емкости "бумаги" как носителя информации. В последние десятилетия не только сложные специализированные карты типа экологических, но и ряд обычных бумажных карт из-за перегруженности информацией становятся "нечитаемыми". ГИТ решает эту проблему путем управления визуализацией информации. Появляется возможность выводить на экран или на твердую копию только те объекты или их множества, которые необходимы пользователю в данный момент. То есть фактически осуществляется переход от сложных комплексных карт к серии взаимоувязанных частных карт. При этом обеспечивается лучшая структурированность информации, что позволяет ее эффективно использовать (манипулирование, анализ данных и т.п.). Очевидно, что наблюдается тенденция возрастания роли ГИТ в процессе активизации информационных ресурсов, т.к. огромные массивы картографической информации эффективно переводимы в активную машиночитаемую форму только с помощью ГИТ. Кроме того, в ГИТ карта становится действительно динамическим объектом.

Последнее обусловлено следующими новыми возможностями ГИТ:

изменяемостью масштаба;

преобразованием картографических проекций:

варьированием объектным составом карты;

"опросом" через карту в режиме реального времени многочисленных БД, содержащих изменяемую информацию;

варьированием символогией, то есть способом отображения объектов (цвет, тип линии и т.п.), в том числе определение символогии через значения атрибутивных призн а- ков объектов, что позволяет синхронизировать визуализацию с изменениями в БД.

В настоящее время широко распространено понимание того, что ГИТ - это не класс или тип программных систем, а базовая технология {umbrella technology) для многих компьютерных приложений (методов и программ), работающих с пространственной информацией.

Поскольку ЦКМ являются наборами данных сложной структуры, то их целесообразно представлять в различных форматах. Под форматом ЦКМ понимается специально введенная система классификации и кодирования данных о местности. От принятого формата ЦКМ во многом зависит оперативность решения функциональных задач (ФЗ) в системах управления военного назначения. Так, например, в случае представления рельефа местности горизонталями вычисление профиля местности занимает в тысячи раз больше времени, чем при представлении рельефа в форме матрицы высот.

Одним из важнейших и наиболее часто встречающихся типов информационной потребности в геоинформации является построение изображения участка карты на экране

27

АРМ {визуализация карты). Но средства отображения ЦКМ на экране АРМ, наряду с приведенными выше требованиями к средствам доступа, должны отвечать еще ряду сп е- цифических требований, обусловленных необходимостью восприятия информации человеком. По существу - это следующие эргономические требования, которые целесообразно рассматривать в комплексе с другими:

по "читабельности" обстановки (т.е. обладать достаточно высокими характеристиками скорости и достоверности восприятия человеком информации оперативной обстановки на фоне карты);

по "читабельности" карты, (т.е. обладать достаточно высокими характеристиками скорости и достоверности восприятия человеком собственно картографической информации);

по "комфортности" восприятия, (т.е. форма отображения данных не должна вызывать чрезмерных напряжения человека при восприятии ин¬формации и раздражения его органов чувств в целях обеспечения требуемой продолжительности сохранения его работоспособности).

ФЗ требует для своего решения различные данные о местности. По мнению авторов, все множество этих задач по характеру использования ЦКМ можно разделить на четыре основных класса:

задачи, требующие выдачу изображения карты на устройства вводавывода средств автоматизации и использующие ее в качестве фона для вывода оперативной обстановки (ОКФ);

задачи, использующие информацию о характере и профилях местности

(ОХПМ);

задачи, использующие информацию о дорожной сети (РДС);

задачи, использующие информацию о местоположении объекта в пределах территории государства, зоны ответственности или нейтральной территории (ОМП).

Задачами ОКФ являются все задачи, отображающие оперативную обстановку на местности в процессе диалога с пользователем. Данные задачи могут отображать "поверх карты" информацию о группировках своих войск и войск противника, зонах радиоактивного, химического, биологического заражения, сплошных разрушений, пожаров, затопл е- ний, о направлениях и рубежах действий, районах сосредоточения и др. Общая для задач ОКФ особенность использования ЦКМ заключается в необходимости быстрого вывода изображения карты на экран АРМ в различных масштабах.

К задачам ОХПМ относятся задачи выбора места развертывания радиорелейных станций (РРС), тропосферных станций (ТРС), радиолокационных станций (PJIC), средств радиотехнической разведки, радиоэлектронной борьбы и т.д. Задачи оценки защитных свойств местности в районах развертывания пунк¬тов управления (ПУ) и узлов связи (УС), планирования огневого воздействия и т.п. также относятся к классу ОХПМ. Особенностью задач ОХПМ является необходимость определения с высокой скоростью х а- рактеристик местности в окрестностях точки с произвольными координатами.

К задачам РДС относятся, в частности, задачи определения маршрута и планирования порядка перемещения воинских формирований, оптимального пла-нирования перевозок средств снабжения или почты и некоторые другие. Данные задачи используют данные ЦКМ о дорожной сети, которые должны быть представлены в специальной форме - в виде графа, в котором все пересекающиеся дороги имеют общую вершину в перекрестках.

Задачи ОМП используют в ЦКМ данные о государственных (сухопутных и морских) и иных границах, заданные в специальной форме - в виде замкнутых контуров.

По типу информационных потребностей многие ФЗ можно отнести сразу к нескольким различным классам. В частности, задача определения оптимального района развертывания РРС может обладать свойствами классов ОХПМ и РДС, а в процессе р е- шения для организации диалога с пользователем - свойствами класса ОКФ.

28

В связи с глубоким взаимопроникновением ГИС и других информационных технологий целесообразно рассмотреть взаимосвязь ГИТ с другими техноло-гиями.

Прежде всего, это графические технологии систем автоматизированного проектирования (САПР), векторных графических редакторов, и с другой сторо-ны - технологии реляционных СУБД. Большинство реализаций современных ГИТ в своей основе и представляет собой интеграцию этих двух типов инфор-мационных технологий. Следующий тип родственных информационных техно-логий - технологии обработки изображений растровых графических редакто-ров. Некоторые реализации ГИТ базируются на растровом представлении гра-фических данных. Поэтому очень многие современные ГИС общего назначения интегрируют возможности как векторного, так и растрового представления. В свою очередь, ряд технологий обработки изображений, предназначенных для работы с данными аэро- и космических съемок, очень близко примыкают к ГИТ, а иногда частично выполняют и их функции. Но обычно они к ГИТ ком-плементарны и имеют специальные средства для взаимодействия с ними (ERDAS LiveLink to ARC/INFO)

Геоинформационные системы и технологииБлизкородственны к ГИТ картографические (геодезические) технологии, применяющиеся при обработке данных полевых геодезических съемок и по-строении по ним карт (при построении карт по аэроснимкам с использованием фотограмметрических методик и при работах с цифровой моделью рельефа ме-стности). Здесь также наблюдается тенденция к интеграции, т.к. подавляющее число современных ГИС включают в себя средства координатной геометрии (COGO), которые позволяют непосредственно использовать данные полевых геодезических наблюдений, в том числе прямо с приборов с цифровой регист-рацией или с приемников спутниковой глобальной системы позиционирования (GPS). Фотограмметрические пакеты обычно ориентируются на совместную работу с ГИС и в ряде случаев включаются в ГИС как модули.

Сущность ГИТ проявляется в ее способности связывать с картографически-ми (графическими) объектами некоторую описательную (атрибутивную) ин-формацию (в первую очередь алфавитно-цифровую и иную графическую, зву-ковую и видеоинформацию). Как правило, алфавитно-цифровая информация организуется в виде таблиц реляционной БД. В простейшем случае каждому графическому объекту (точечному, линейному или площадному) ставится в со-ответствие строка таблицы - запись в БД. Использование такой связи и обеспе-чивает богатые функциональные возможности ГИТ. Эти возможности, естест-венно, различаются у разных систем, но есть базовый набор функций, обычно имеющийся в любой реализации ГИТ, например, возможность ответа на вопро-сы "что это?" указанием объекта на карте и "где это находится?" выделением на карте объектов, отобранных по некоторому условию в БД. К базовым можно также отнести ответ на вопрос "что рядом?" и его различные модификации. Ис-торически первое и наиболее универсальное использование ГИТ - это инфор-мационно-поисковые, справочные системы.

Таким образом, ГИТ можно рассматривать как некое расширение техноло-гии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относит-ся к объектам, для которых важную роль играет их пространственное положе-ние, форма и взаиморасположение. Следовательно, ГИТ во многих приложени-ях значительно расширяют возможности обычных СУБД.

ГИТ, так же как и любая другая технология, ориентирована на решение оп-ределенного круга задач. Поскольку области применения ГИС достаточно ши-роки (военное дело, картография, география, градостроительство, организация транспортных диспетчерских служб, и т.д.), то ввиду специфики проблем, ре-шаемых в каждой из них, и особенностей, связанных с конкретным классом ре-шаемых задач и с требованиями, предъявляемыми к исходным и выходным данным, точности, техническим средствам и прочее, говорить о какой-то еди-ной ГИС-технологии достаточно проблематично.

29

Вместе с тем любая ГИТ включает в себя ряд операций, которые можно рас-сматривать как базовые. Они различаются в конкретных реализациях только де-талями, например, программным сервисом сканирования и постсканерной обра-ботки, возможностями геометрического преобразования исходного изображе-ния в зависимости от исходных требований и качества материала и т.д.

Поскольку приведенная модель является обобщенной, то естественно, что она либо не содержит отдельных блоков, свойственных какой-либо конкретной технологии, либо наоборот имеет в своем составе те блоки, которые в ряде слу-чаев могут отсутствовать.

По результатам анализа обобщенной модели ГИС-технологии можно выде-лить следующие базовые операции ГИТ:

редакционно-подготовительные работы, т. е. сбор, анализ и подготовка исходной информации (картографические данные, аэрофотоснимки, дан-ные дистанционного зондирования, результаты наземных наблюдений, статистическая информация и т.д.) для автоматизированной обработки;

проектирование геодезической и математической основ карт; проектирование карт; построение проекта цифровой тематической карты;

преобразование исходных данных в цифровую форму; разработка макета тематического содержания карты;

определение методов автоматизированного построения тематического содержания; формирование цифровой общегеографической основы создаваемой кар-ты; создание цифровой тематической карты в соответствии с разработанным проек-

том;

получение выходной картографической продукции.

Для ввода исходной информации используются растровые сканирующие устройства, дигитайзеры, полутоновые сканеры аэрофотонегативов. Получен-ные цифровые массивы данных поступают в комплекс технических средств об-работки растровых и векторных данных, построенный на базе рабочих станций и персональных профессиональных ЭВМ. На этой же инструментальной базе осуществляются все этапы проектирования, преобразования исходной инфор-мации и создания цифровой тематической карты.

Сформированная цифровая картографическая модель поступает в комплекс технических средств формирования выходной картографической продукции, включающей в себя плоттеры, принтеры, специализированные устройства вы-вода на фотоноситель и т.д.

Исходные и обработанные цифровые данные хранятся в подсистеме архив-ного хранения данных, базирующейся в настоящее время на стримерах или на оптических дисках.

Области применения ГИТ в настоящее время чрезвычайно многообразны.

Прежде всего, это различные кадастры, системы управления распределен-ным хозяйством и инфраструктурой. Здесь развиты специализированные при-ложения, например, для систем: электрических сетей энергетической компании, кабельной сети телефонной или телевизионной компании, сложного трубопро-водного хозяйства большого химического завода, земельного кадастра, опери-рующие недвижимостью, а также такие приложения, как комплексные системы, обслуживающие многие составляющие инфраструктуры города или территории и способные решать сложные задачи управления и планирования. Конкретные цели и задачи в таких системах очень разнообразны: от задач инвентаризации и учета, справочных систем общего пользования до налогообложения, градо- строительно-планировочных задач, планирования новых транспортных мар-шрутов и оптимизации перевозок, распределения сети ресурсов и услуг (скла-дов, магазинов, станций скорой помощи, пунктов проката автомобилей).

30

Еще одной развитой областью применения ГИТ является учет, изучение и использование природных ресурсов, включая сюда и охрану окружающей сре-ды. Здесь также встречаются как комплексные системы, так и специализиро-ванные: для лесного хозяйства, водного хозяйства, изучения и охраны дикой фауны и флоры и т.д. К этой области применения непосредственно примыкает использование ГИТ в геологии, как в научных, так и в практических ее задачах. Это не только задачи информационного обеспечения, но и, например, задача прогнозирования месторождений полезных ископаемых, контроль экологиче-ских последствий разработок и т.п. В геологических применениях, как и в эко-логических, велика роль приложений, требующих сложного программирования или комплексирования ГИТ со специфическими системами обработки и моде-лирования. Особенно в этом плане выделяются приложения в области нефти и газа. Здесь на стадии поисков и разведки широко используются данные сейсмо-разведки и весьма специфическое и развитое ПО по их обработке и анализу. Ве-лика потребность в комплексных решениях, увязывающих собственно геологи-ческие и иные проблемы, что невозможно решить без привлечения универсаль-ных ГИС.

Отдельно следует выделить сугубо транспортные задачи. Среди них: пла- ни-рование новых маршрутов транспорта и оптимизация процесса перевозок с воз-можностью учета распределения ресурсов и меняющейся транспортной обста-новки (ремонты, пробки, таможенные барьеры). Особенно перспективными в стратегическом плане предполагаются навигационные системы, особенно бази-рующиеся на спутниковых системах навигации с использованием цифровой картографии.

Характерной чертой внедрения ГИТ в настоящее время является интеграция систем и баз данных в национальные, международные и глобальные информа-ционные структуры. К глобальным проектам относится, например, GDPP - "Проект глобальной базы данных", разрабатываемый в рамках Международной геосферно-биосферной программы. На национальном уровне существуют ГИС в США, Канаде, Франции, Швеции, Финляндии и других странах. В России в настоящее время разрабатываются региональные ГИС, в частности, для ведения земельного кадастра и муниципального управления, а также ведомственные ГИС, например, в Министерстве внутренних дел.

Анализ существующего на сегодняшний день опыта применения ГИТ пока-зывает , что основной формой применения ГИТ является различные по целям, сложности, составу и возможностям ГИС.

Современные ГИС представляют собой новый тип интегрированных систем, которые, с одной стороны, включают методы обработки данных существующих автоматизированных систем, а с другой - обладают спецификой в организации и обработке данных

Так как в ГИС осуществляется комплексная обработка информации (от ее сбора до хранения, обновления и предоставления), их можно рассматривать со следующих разли ч- ных точек зрения:

ГИС как система управления - предназначена для обеспечения поддерж-ки принятия решений на основе использования картографических дан-ных;

ГИС как автоматизированная информационная система - объединяет ряд технологий известных информационных систем (САПР и других);

ГИС как геосистема - включает технологии фотометрии, картографии; ГИС как система, использующая БД, - характеризуется широким набо-ром данных,

собираемых с помощью разных методов и технологий; ГИС как система моделирования, система предоставления информации - является

развитием систем документального оборота, систем мультиме-диа и т.д. Геоинформационные системы и технологииГИС с развитыми аналитическими

возможностями близки к системам стати-стического анализа и обработки данных, причем в ряде случаев они интегриро-ваны в единые системы, например:

имплантация в современную ГИС ARC/INFO мощного статистического пакета S-

PLUS;

Соседние файлы в папке из электронной библиотеки