Добавил:
kane4na@yandex.ru Полоцкий Государственный Университет (ПГУ), город Новополоцк. Что бы не забивать память на компьютере, все файлы буду скидывать сюда. Надеюсь эти файлы помогут вам для сдачи тестов и экзаменов. Учение – свет. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Строительные и дорожные машины. Основы автоматизации

.pdf
Скачиваний:
31
Добавлен:
24.01.2023
Размер:
12.85 Mб
Скачать

170

Рис. 3.29. Кинематические схемы механизмов пневмоколесного крана:

а ) –силовой установки; б ) –механизма вращения; в) –механизма вспомогательного подъема; г) – механизма главного подъема; д) – стрелоподъемного механизма; 1– двигатель; 2,3 – генераторы; 4– электродвигатель; 5– гидравлический насос

Пневмоколесный кран транспортируется собственным ходом, на буксире к тягачу или по железной дороге.

Краны на специальных шасси автомобильного типа. По своему технологическому назначению краны данного типа должны обеспечивать эффективную работу на рассредоточенных объектах, иметь большую грузоподъемность, хорошую проходимость и маневренность в условиях строительной площадки. В современных конструкциях кранов эти требования реализуются путем применения специальных шасси автомобильного типа, гидравлического привода механизмов крана и телескопических стрел, что создает им значительные преимущества по сравнению с пневмоколесными кранами с решетчатыми стрелами. Грузоподъемность кранов на специальных шасси 25...500 т, скорость передвижения 60...70 км/ч.

По конструкции специальные шасси существенно отличаются от обычных шасси автомобиля числом приводных и управляемых осей, их распределением на базе конструкцией подвесок и управления. Для удовлетворения требований о предельной нагрузке на ось специальные шасси изготовляют многоосными (3...8 осей). Число приводных осей назначают, исходя из условий достижения проходимости при движении по стройплощадке, а число управляемых осей выбирается из расчета минимального радиуса поворота, достаточного для вписывания крана в существующую дорожную сеть.

На рис. 3.30 показан общий вид крана грузоподъемностью 120 т на шестиосном шасси с колесной формулой 12×8 с четырьмя управляемыми осями.

171

Рис.3.30. Стреловой кран на специальном шасси грузоподъемности 120 т:

1– шасси; 2– телескопическая стрела; 3– гидроцилиндр; 4–поворотная часть; 5–лебедка

Отличительной особенностью кранов на специальных шасси является также наличие у них двух силовых установок, из которых одна размещена на шасси 1, а вторая — на поворотной части крана 4. Силовая установка, расположенная на шасси, обеспечивает передвижение крана и привод гидравлических насосов для управления выносными опорами 6. Силовая установка поворотной части крана обеспечивает работу крановых механизмов. Она состоит из дизеля, гидравлических насосов (одного или нескольких), питающих через гидрораспределители гидравлические моторы лебедок главного и вспомогательного подъемов 5, и механизма вращения крана. Кроме того, эти

насосы

питают

гидроцилиндры подъема стрелы

3 и гидроцилиндры

выдвижения

секций

телескопической стрелы 2.

Гидропривод кранов

позволяет получить широкий диапазон скоростей рабочих движений механизмов за счет совмещения расходов жидкости двух напорных линий по параллельной или последовательной схеме, а также совмещение рабочих движений в разных вариантах.

Управление рабочими операциями крана производится из кабины, расположенной на поворотной части. Механизмы лебедок состоят из одного или двух гидромоторов, цилиндрических редукторов, встроенных в барабаны, колодочных или дисковых тормозов. Телескопические стрелы конструктивно выполняются из трех (у кранов грузоподъемностью 25 и 40 т) и четырех (у кранов грузоподъемностью 63 и 100 т) секций и оснащаются удлинителями различных размеров. Выдвижение секций осуществляется гидроцилиндрами, а последней секции — канатным приводом. При работе крана вся нагрузка от собственной силы тяжести и массы груза воспринимаются выносными опорами, при этом горизонтальность платформы контролируется системой автоматики. Отечественной промышленностью выпускаются краны на специальных шасси грузоподъемностью 25, 40, 63 и 100 т.

Краны на короткобазовом шасси. Они бывают двухосными, с обеими ведущими и управляемыми осями и базой в пределах 1,8...2,0 м, имеют малый радиус поворота и предназначены для работы в стесненных условиях. Гидравлические насосы приводятся от коробки отбора мощности привода шасси. Краны изготовляются грузоподъемностью 6,3...10, 16 и 25 т.

172

Гусеничные краны. Применение для стреловых кранов гусеничного ходового оборудования привело к созданию монтажных гусеничных кранов с большой номенклатурой их по грузоподъемности — 16, 25, 40, 63, 100, 160, 250 т. Гусеничные краны работают без выносных опор и могут передвигаться в пределах строительной площадки в любом направлении со скоростью 0,5...1,0 км/ч. Высокая маневренность, а также большая грузоподъемность обусловили их широкое применение в различных отраслях строительства на объектах с большими и, в том числе, с рассредоточенными объемами работ для монтажа укрупненных конструкций и технологического оборудования. Эти качества создали гусеничным кранам высокую конкурентную способность по

отношению к специальным башенным кранам, требующим

устройства

подкрановых путей.

 

На рис. 3.31 приведена конструктивная схема монтажного гусеничного крана с различными видами рабочего оборудования. Он состоит из поворотной платформы, опирающейся через опорно-поворотное устройство на ходовую часть крана. На поворотной платформе монтируются рабочее оборудование, силовая установка, механизмы стреловой и грузовых (основного и вспомогательного подъема) лебедок, механизм вращения и управления краном. Гусеничные краны изготавливаются с механическим и электрическим приводом. Ходовая часть гусеничных кранов состоит из неповоротной рамы, опирающейся на две приводные гусеничные тележки с многоопорными гусеничными звеньями, обеспечивающими низкие (до 0,1 МПа) удельные давления на грунт. Привод каждой гусеницы состоит из тихоходного электрического двигателя, редукторов, ведущей звездочки гусеницы и тормоза. Для увеличения опорного контура при работе поперек гусениц у ряда моделей гусеничных кранов применяют раздвижные гусеничные тележки.

Рис. 3.31. Гусеничный кран грузоподъемностью 160 т: а) основная стрела; б)удлиненная стрела; в)башенно-стреловое оборудование; г)графики грузоподъемности;

1 с основной стрелой; 2 − с башенно-стреловым оборудованием

173

Козловые краны. Козловые краны разделяют на монтажные и общего назначения. Краны общего назначения имеют грузоподъемность до 5 т, монтажные − до 500 т. Размеры пролета и высоты подъема груза устанавливают в зависимости от технологического назначения. Несущей конструкцией козлового крана (рис. 3.32) является мост 2 с двумя опорами 7. По мосту крана перемещается грузовая тележка 3 с грузозахватным устройством. Опоры крана устанавливаются на ходовые тележки 8, каждая из которых перемещается по двурельсовому пути. Мосты кранов малой (до 5 т) грузоподъемности изготовляют в виде пространственной трехпоясной фермы и ездовой балки двутаврового профиля, по которой передвигается электроталь. Мосты кранов средней и большой грузоподъемности выполняются в виде четырехпоясной решетчатой фермы прямоугольного или трапецеидального сечения. Грузовая тележка этих кранов может перемещаться по нижнему или верхнему поясу моста. Распространены комбинированные конструкции кранов, у которых по верхнему поясу перемещается грузовая тележка основного, а по нижнему — вспомогательного механизма 9 меньшей грузоподъемности. Мосты кранов выполняются с консолями и без них. Длина консолей достигает 25...30% от длины пролета. В этом случае тележка вспомогательного подъема перемещается по всей длине пролетного строения. При больших пролетах одна из опор крана обычно жестко соединяется с мостом, а другая — шарнирно. Шарнирная опора устраняет опасность заклинивания ходовых тележек при температурных изменениях или изменении положения подкрановых путей. При небольших пролетах обе опоры могут быть жесткими.

Рис. 3.32. Козловой кран грузоподъемностью 100 т:

а− схема крана; б − схема запасовки канатов механизма передвижения тележки; в − то же, механизма подъема груза; 1− лебедка; 2− мост; 3− грузовая тележка; 4− полиспаста; 5− траверс; 6− кабина оператора; 7− опора; 8− ходовые тележки; 9− механизм подъема; 10,11, 12, 13 – лебедки

174

Передвижение грузовой тележки вдоль моста осуществляется с помощью канатов и электрореверсивной лебедки (рис. 3.33,6). Механизм подъема имеет два полиспаста 4, расположенных симметрично с обеих сторон моста и работающих на общую траверсу 5. Верхние блоки полиспастов установлены в подшипниках тележки, а нижние — на траверсе. У тяжелых монтажных кранов для достижения малых скоростей посадки груза для механизма подъема применяют четыре лебедки (рис. З.З3, в). При такой подвеске скорости подъема (опускания) можно изменять в широких пределах путем включения всех лебедок, либо лебедок 10 и 11 или 12 и 13, либо лебедок 10 и 11 в одну сторону, а лебедок 12 и 13 в другую. Для уменьшения нагрузки на мост грузовые и тяговые лебедки располагают на опорах или на жестких поперечных балках, соединяющих стойки опоры. Управление краном осуществляется из кабины 6. На ходовых тележках устанавливают противоугонные захваты с раздельным приводом. Анемометр при ураганном ветре автоматически включает в работу двигатель захвата.

Представленный на схеме козловой монтажный кран используется при монтаже котлов тепловых электростанций при открытой установке оборудования и имеет грузоподъемность главного подъема 100т, вспомогательного 10 т, высоту подъема 37,5 м, пролет 31 м, массу 225 т.

Большинство козловых кранов самомонтирующиеся. Мост крана стреловым краном укладывают на шпальные клетки, одновременно устанавливают на рельсы ходовые тележки, стойки опор соединяют шарнирно с поясом моста и тележками, затем левые и правые стойки стягивают посредством лебедки и устанавливают кран в рабочее положение. Стойки опор внизу соединяют жесткими поперечинами (затяжками опор крана).

Полукозловые краны. Такие краны (рис. 3.33) обычно устанавливают на большой высоте и передвигают по путям 4, уложенным на строительных конструкциях здания, например, на этажерке главного корпуса ТЭС для монтажа систем пылеприготовления и золоулавливания. Несущий мост 3 и жесткая опора 5 выполнены в виде Г-образных жестких рам. В связи с тем что нагрузка от крана воспринимается каркасом здания, они должны иметь малую массу. Уменьшение массы крана достигается снижением подвижной нагрузки на мост крана, для чего лебедки механизма подъема 2 и механизма передвижения 1 грузовой тележки устанавливаются на жесткой опоре.

В теплоэнергетическом строительстве используются полукозловые краны грузоподъемностью 10...30 т с пролетом 11...28 м и высотой подъема 16...60 м. В связи с большой высотой установки полукозловых кранов их рассчитывают на большую ветровую нагрузку и обязательно снабжают противоугонными захватами автоматического действия.

175

Рис. 3.33. Полукозловой кран: 1− механизм передвижения; 2− механизм подъема; 3− несущий мост; 5− жесткая опора

Мостовые краны. Эти краны применяют в строительстве электростанций и других объектов при сооружении фундаментов, монтаже оборудования и строительных конструкций. По завершению строительства они остаются в качестве «штатного оборудования» для обслуживания технологического оборудования в процессе эксплуатации.

Мостовой кран (рис. 3.34) состоит из двух основных частей — моста 2 и грузовой тележки 3. Мост крана представляет собой металлическую конструкцию, опирающуюся на ходовые колеса, которые приводятся в действие механизмом передвижения моста 6. Последний установлен непосредственно на мосту и осуществляет горизонтальное перемещение крана по рельсовому пути, уложенному на подкрановые балки здания. По конструкции моста различают одно- и двухбалочные мостовые краны. Однобалочные краны выполняют грузоподъемностью до 10 т с небольшим пролетом (5...17 м). При большой грузоподъемности мост крана выполняют из двух продольных балок коробчатого или таврового сечения, соединенными концевыми балками.

На продольных несущих балках моста передвигается грузовая тележка. Она состоит из рамы, опирающейся на ходовые колеса, механизмов подъема груза 4 и передвижения 5. В мостовых кранах грузоподъемностью более 20 т применяют два механизма подъема груза главный и вспомогательный; грузоподъемность вспомогательного в 3...5 раз меньше главного механизма подъема. Все три механизма мостового крана механизм подъема груза, передвижения моста и передвижения тележки имеют самостоятельные двигатели и приводятся в действие независимо друг от друга. Их выполняют по обычным схемам: двигатель муфта − тормоз редуктор − исполнительный орган (ходовое колесо или барабан лебедки). Управление краном ведется из кабины оператора, подвешенной к мосту крана.

176

Рис. 3.34. Мостовой кран: 1−кабина оператора; 2−мост; 3− грузовая тележка; 4,5 − механизм подъема груза и передвижения; 6 − передвижения моста

Мостовые краны в энергетическом строительстве имеют большую грузоподъемность главного и вспомогательного подъемов при относительно небольших пролетах и высоте подъема крюка. Так, для обслуживания главных залов ГРЭС применяют краны грузоподъемностью 100 − для главного и 20 т − для вспомогательного подъема при пролетах 20...23 м и высоте 20...25 м. Грузоподъемность кранов машинных залов ГЭС достигает 400 − для главного и 100 т −для вспомогательного подъемов при примерно аналогичных значениях высот и пролетов.

Кабельные краны. В кабельном кране (рис. 3.35) грузовая тележка 6 перемещается тяговым канатом 5 по стальному проволочному несущему канату 3 специальной конструкции, натянутому между двумя мачтами 1. Мачты крана растянуты вантами 2, прикрепленными к якорям. Грузовой канат 4 образует полиспаст 8 между блоками на грузовой тележке и на крюковой подвеске. Один конец этого каната закреплен на мачте, а другой – на барабане грузовой лебедки. Натяжение несущего каната обеспечивается полиспастом 7. Между мачтами натянут также поддерживающий канат, на котором размещены устройства для удержания всех канатов на определенном расстоянии друг от друга и относительно несущего каната. Лебедки крана размещены в машинном отделении на опорах мачт. По степени подвижности мачт различают кабельные краны: с обеими неподвижными мачтами; с качающимися мачтами в обе стороны на угол до 8°; с обеими подвижными на тележках мачтами, передвигающимися по рельсовым путям; с одной подвижной мачтой, передвигающейся по дуге окружности, и др. В зависимости от степени

177

подвижности мачт зона обслуживания представляет линию, прямоугольник или сектор круга.

Рис. 3.35. Кабельный кран: 1− мачта; 2− ванта; 3− несущий канат; 4−грузовой канат; 5- тяговый канат; 6− грузовая тележка; 7, 8−полиспасты

Кабельные краны используют для транспортирования строительных материалов через водные препятствия, при строительстве и реконструкции действующих предприятий, подаче крупных блоков, бетона, закладных деталей к объектам ГЭС и прочим труднодоступным местам, где применение других грузоподъемных машин затруднено или становится невозможным.

К достоинствам кабельных кранов относится также большая протяженность зоны обслуживания — от 250...400 до 1000 м. Высота подъема груза определяется конкретными условиями рельефа местности и габаритами сооружения. Она назначается такой, чтобы при максимальной стреле провисания несущего каната груз свободно проходил над возводимым или реконструируемым сооружением. Грузоподъемность кабельных кранов 5...15 т, а в отдельных случаях может достигать 25 т и более.

Недостатком кабельных кранов являются колебания несущего каната в вертикальной плоскости в результате изменения стрелы провисания при кратковременном снятии нагрузки (например, при разгрузке грейфера, опорожнении бадьи с бетоном и др.), а также необходимость постоянного контроля за натяжением несущего каната и вант.

3.5. Использование грузоподъемных машин

Использование грузоподъемных машин в строительстве регламентируется требованиями строительных норм и правил и безопасной эксплуатации грузоподъемных кранов, контроль за соблюдением которых возложен на органы Госгортехнадзора. Эти требования направлены на обеспечение длительной работы грузоподъемных машин с максимально возможной

178

производительностью и обязательное выполнение правил техники безопасности − обеспечение устойчивости кранов, оборудование их устройствами безопасности, систематическое проведение технического освидетельствования кранов и грузозахватных органов и др.

Производительность строительных кранов. Среднечасовая эксплуатационная производительность (т/ч) строительных кранов характеризуется массой поднятых грузов за один машино-час:

Пэ.ч 60QkT kв /tц ,

(3.12)

где Q – грузоподъемность, т; kТ – коэффициент использования крана по грузоподъемности; kв – то же, по времени (значения kr и kв в принимают в зависимости от типа рабочего оборудования: при крюковом оборудовании kТ =0,8...0,9, kв=0,75...0,9; при грейферном kТ = 0,8...0,9, kв=0,85...0,95); tц

продолжительность рабочего цикла, мин; tц= tм + tp.o, где tм – средняя продолжительность машинного времени цикла, приведенная к конкретным условиям эксплуатации (высота подъема груза, угол поворота крана, длина горизонтального перемещения проекции груза при изменении вылета, расстояние передвижения крана в течение цикла и др.), определяемая с учетом совмещенных движений механизмов, мин; tp.o – средняя продолжительность ручных операций по строповке, наводке и установке груза в проектное положение, определяемая видом грузозахватных устройств, типом монтажных элементов и квалификацией монтажников, мин.

В общем случае (рис. 3.36)

tц 2[H / vг l1 / v1 l2 / v2

/(360 n)]k tp.o , (3.13)

где Н=Н1+h, высота подъема груза, м; Н1 высота монтажного здания, м; h расстояние от верхней отметки здания до низа груза, м; vг скорость подъема (опускания) груза, м/мин; l1 средний путь каретки, стрелы (при изменении вылета), м; l2 −средний путь крана, м; V1скорость изменения вылета, м/мин; V2 скорость передвижения крана, м; α − угол поворота крана (стрелы), град; k − коэффициент, учитывающий совмещение операций; п − частота вращения крана (стрелы), мин-1.

Годовую эксплуатационную производительность можно определить через среднечасовую по формуле

Пэ.г Пэ.чТ кв ,

(3.14)

где Т– рабочее время крана в году, ч; kв – коэффициент использования внутрисменного времени, принимаемый на основании статистических данных; усредненное значение kв = 0,86. Для определения эффективности использования для всего списочного парка кранов установлены директивные нормы выработки кранов, исчисляемые в тоннах на 1 т грузоподъемности крана. Например, для стреловых самоходных кранов грузоподъемностью 25 т годовая директивная норма выработки при монтаже металлоконструкций составляет 155 т на 1 т грузоподъемности.

179

Рис. 3.36. Схема к определению среднего машинного времени

Устойчивость кранов. Степень устойчивости свободно стоящих кранов, определяемая коэффициентами устойчивости, представляет собой отношение удерживающего момента к опрокидывающему. Нагрузки, создающие опрокидывающий момент в этих кранах, как правило, приложены за пределами опорного контура, а сила тяжести крана, приложенная внутри опорного контура, создает соответственно удерживающий момент. При разных положениях рабочего оборудования изменяются координаты его центра тяжести, значения действующих сил и их плечи, а следовательно, значения опрокидывающих и удерживающих моментов. Коэффициенты устойчивости и методика их определения регламентированы правилами Гостехнадзора, а для башенных кранов — ГОСТ 13994—91.

Различают грузовую (во время работы) и собственную (в нерабочем состоянии) устойчивость. Проверку устойчивости производят в условиях, когда сочетание действующих на кран нагрузок наиболее неблагоприятно с точки зрения возможности опрокидывания крана. Согласно правилам Госгортехнадзора значения коэффициентов грузовой и собственной устойчивости должны быть не менее 1,15.

При проверке грузовой устойчивости считают, что кран стоит на наклонной площадке, подвержен действию ветра, поворачивается, одновременно тормозится опускаемый груз и движущийся кран (рис. 3.37, а). Коэффициент грузовой устойчивости

Кr MG MМв /MQ 1,15,

(3.15)

где MG Gg[(b c)cos h1 sin −момент, создаваемый

силой тяжести

частей крана относительно ребра опрокидывания; Mин

Мин.гр Мин.кр.гр Мц

суммарный момент сил инерции и груза, возникающих в процессе торможения