Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

4331

.pdf
Скачиваний:
1
Добавлен:
08.01.2021
Размер:
940.02 Кб
Скачать

21

2.Оцените относительную населенность зоны проводимости полупроводника при комнатной температуре, если длина волны излучения п/п лазера

700 нм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,25 раза, его удельное сопротивление уменьшилось в три раза. Конечная температура образца Т = 350 К.

4.Определите высоту потенциального барьера на p+-n переходе на герма-

ниевой базе при комнатной температуре, если акцепторная примесь превышает донорную в 1,5 раза, а концентрация донорной примеси 1015 см-3. Концентрация собственных носителей в германии 2,4∙1013.

5.Определите сопротивление нагрузки для транзистора в схеме с общим эмиттером, если коэффициент усиления по току равен 45, а входное сопротивление составляет 5 Ом (Ku=50).

Вариант 9

1.Оцените (в МэВ) минимальную энергию электрона, локализованного в области с размерами 10 ферми.

2.Оцените относительную населенность зоны проводимости полупроводника при комнатной температуре, если длина волны излучения п/п лазера

700 нм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,05 раза, его удельное сопротивление уменьшилось в четыре раза. Начальная температура образца Т = 300 К.

4.Определите высоту потенциального барьера на симметричном p-n перехо-

де на кремниевой базе при комнатной температуре, концентрация донорной примеси 1012 см-3. Концентрация собственных носителей в германии

1,4∙1010.

5.Определите сопротивление нагрузки для транзистора в схеме с общей базой, если коэффициент усиления по току равен 0,95, а входное сопротивление составляет 1 Ом (Ku=30).

Вариант 10

1.Оцените минимальный размер области локализации электрона, энергия которого не превышает 10 эВ.

2.Оцените относительную населенность зоны проводимости полупроводника при комнатной температуре, если длина волны излучения п/п лазера

700 нм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,25 раза, его удельное сопротивление уменьшилось в три раза. Конечная температура образца Т = 350 К.

4.Определите высоту потенциального барьера на p-n+ переходе на базе ар-

сенида галлия при комнатной температуре, если донорная примесь превышает акцепторную в 1,2 раза, а концентрация донорной примеси 108 см-3. Концентрация собственных носителей в арсениде галлия 1,8∙106.

22

5.Определите сопротивление нагрузки для транзистора в схеме с общим коллектором, если коэффициент усиления по току равен 36, а входное сопротивление составляет 10 Ом (Ku=55).

Вариант 11

1.Оцените (в эВ) минимальную энергию электрона, локализованного в области с размерами 1 Å.

2.Оцените относительную населенность зоны проводимости полупроводника при комнатной температуре, если длина волны излучения п/п лазера

700 нм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,05 раза, его удельное сопротивление уменьшилось в четыре раза. Начальная температура образца Т = 300 К.

4.Определите высоту потенциального барьера на p-n+ переходе на базе арсенида галлия при комнатной температуре, если донорная примесь пре-

вышает акцепторную в 1,2 раза, а концентрация донорной примеси 108 см-3. Концентрация собственных носителей в арсениде галлия 1,8∙106.

5.Определите сопротивление нагрузки для транзистора в схеме с общим эмиттером, если коэффициент усиления по току равен 45, а входное сопротивление составляет 5 Ом (Ku=50).

Вариант 12

1.Оцените (в МэВ) минимальную энергию электрона, локализованного в области с размерами 10 ферми.

2.Оцените относительную населенность зоны проводимости полупроводника при температуре на 50 К выше комнатной, если длина волны излучения п/п лазера 0,85 мкм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,05 раза, его удельное сопротивление уменьшилось в четыре раза. Начальная температура образца Т = 300 К.

4.Определите высоту потенциального барьера на симметричном p-n перехо-

де на кремниевой базе при комнатной температуре, концентрация донорной примеси 1012 см-3. Концентрация собственных носителей в германии

1,4∙1010.

5.Определите сопротивление нагрузки для транзистора в схеме с общей базой, если коэффициент усиления по току равен 0,95, а входное сопротивление составляет 1 Ом (Ku=30).

Вариант 13

1.Оцените минимальный размер области локализации электрона, энергия которого не превышает 10 эВ.

2.Оцените относительную населенность зоны проводимости полупроводника при температуре на 150 К ниже комнатной, если длина волны излучения п/п лазера 0,9 мкм.

23

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,25 раза, его удельное сопротивление уменьшилось в три раза. Конечная температура образца Т = 350 К.

4.Определите высоту потенциального барьера на симметричном p-n перехо-

де на кремниевой базе при комнатной температуре, концентрация донорной примеси 1012 см-3. Концентрация собственных носителей в германии

1,4∙1010.

5.Определите сопротивление нагрузки для транзистора в схеме с общим эмиттером, если коэффициент усиления по току равен 45, а входное сопротивление составляет 5 Ом (Ku=50).

Вариант 14

1.Оцените (в эВ) минимальную энергию электрона, локализованного в области с размерами 1 Å.

2.Оцените относительную населенность зоны проводимости полупроводника при температуре на 150 К ниже комнатной, если длина волны излучения п/п лазера 0,9 мкм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,25 раза, его удельное сопротивление уменьшилось в три раза. Конечная температура образца Т = 350 К.

4.Определите высоту потенциального барьера на p-n+ переходе на базе арсенида галлия при комнатной температуре, если донорная примесь пре-

вышает акцепторную в 1,2 раза, а концентрация донорной примеси 108 см-3. Концентрация собственных носителей в арсениде галлия 1,8∙106.

5. Определите сопротивление нагрузки для транзистора в схеме с общим коллектором, если коэффициент усиления по току равен 36, а входное сопротивление составляет 10 Ом (Ku=55).

Вариант 15

1.Оцените (в МэВ) минимальную энергию электрона, локализованного в области с размерами 10 ферми.

2.Оцените относительную населенность зоны проводимости полупроводника при температуре на 150 К ниже комнатной, если длина волны излучения п/п лазера 0,9 мкм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при уменьшении температуры в 1,15 раза, его удельное сопротивление увеличилось в шесть раз. Начальная температура образца Т = 300 К.

4.Определите высоту потенциального барьера на p+-n переходе на герма-

ниевой базе при комнатной температуре, если акцепторная примесь превышает донорную в 1,5 раза, а концентрация донорной примеси 1015 см-3. Концентрация собственных носителей в германии 2,4∙1013.

5.Определите сопротивление нагрузки для транзистора в схеме с общим коллектором, если коэффициент усиления по току равен 36, а входное сопротивление составляет 10 Ом (Ku=55).

24

Вариант 16

1.Оцените минимальный размер области локализации электрона, энергия которого не превышает 10 эВ.

2.Оцените относительную населенность зоны проводимости полупроводника при температуре на 150 К ниже комнатной, если длина волны излучения п/п лазера 0,9 мкм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,05 раза, его удельное сопротивление уменьшилось в четыре раза. Начальная температура образца Т = 300 К.

4.Определите высоту потенциального барьера на симметричном p-n перехо-

де на кремниевой базе при комнатной температуре, концентрация донорной примеси 1012 см-3. Концентрация собственных носителей в германии

1,4∙1010.

5.Определите сопротивление нагрузки для транзистора в схеме с общим эмиттером, если коэффициент усиления по току равен 45, а входное сопротивление составляет 5 Ом (Ku=50).

Вариант 17

1.Оцените (в эВ) минимальную энергию электрона, локализованного в области с размерами 1 Å.

2.Оцените относительную населенность зоны проводимости полупроводника при температуре на 150 К ниже комнатной, если длина волны излучения п/п лазера 0,9 мкм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,25 раза, его удельное сопротивление уменьшилось в три раза. Конечная температура образца Т = 350 К.

4.Определите высоту потенциального барьера на p-n+ переходе на базе арсенида галлия при комнатной температуре, если донорная примесь пре-

вышает акцепторную в 1,2 раза, а концентрация донорной примеси 108 см-3. Концентрация собственных носителей в арсениде галлия 1,8∙106.

5.Определите сопротивление нагрузки для транзистора в схеме с общей базой, если коэффициент усиления по току равен 0,95, а входное сопротивление составляет 1 Ом (Ku=30).

Вариант 18

1.Оцените (в МэВ) минимальную энергию электрона, локализованного в области с размерами 10 ферми.

2.Оцените относительную населенность зоны проводимости полупроводника при температуре на 50 К выше комнатной, если длина волны излучения п/п лазера 0,85 мкм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при уменьшении температуры в 1,15 раза, его удельное сопротивление увеличилось в шесть раз. Начальная температура образца Т = 300 К.

4.Определите высоту потенциального барьера на p-n+ переходе на базе арсенида галлия при комнатной температуре, если донорная примесь пре-

25

вышает акцепторную в 1,2 раза, а концентрация донорной примеси 108 см-3. Концентрация собственных носителей в арсениде галлия 1,8∙106.

5.Определите сопротивление нагрузки для транзистора в схеме с общей базой, если коэффициент усиления по току равен 0,95, а входное сопротивление составляет 1 Ом (Ku=30).

Вариант 19

1.Оцените минимальный размер области локализации электрона, энергия которого не превышает 10 эВ.

2.Оцените относительную населенность зоны проводимости полупроводника при комнатной температуре, если длина волны излучения п/п лазера

700 нм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,05 раза, его удельное сопротивление уменьшилось в четыре раза. Начальная температура образца Т = 300 К.

4.Определите высоту потенциального барьера на p+-n переходе на герма-

ниевой базе при комнатной температуре, если акцепторная примесь превышает донорную в 1,5 раза, а концентрация донорной примеси 1015 см-3. Концентрация собственных носителей в германии 2,4∙1013.

5.Определите сопротивление нагрузки для транзистора в схеме с общим эмиттером, если коэффициент усиления по току равен 45, а входное сопротивление составляет 5 Ом (Ku=50).

Вариант 20

1.Оцените (в эВ) минимальную энергию электрона, локализованного в области с размерами 1 Å.

2.Оцените относительную населенность зоны проводимости полупроводника при температуре на 150 К ниже комнатной, если длина волны излучения п/п лазера 0,9 мкм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при уменьшении температуры в 1,15 раза, его удельное сопротивление увеличилось в шесть раз. Начальная температура образца Т = 300 К.

4.Определите высоту потенциального барьера на симметричном p-n перехо-

де на кремниевой базе при комнатной температуре, концентрация донорной примеси 1012 см-3. Концентрация собственных носителей в германии

1,4∙1010.

5.Определите сопротивление нагрузки для транзистора в схеме с общим коллектором, если коэффициент усиления по току равен 36, а входное сопротивление составляет 10Ом (Ku=55).

Вариант 21

1.Оцените минимальный размер области локализации электрона, энергия которого не превышает 10 эВ.

26

2.Оцените относительную населенность зоны проводимости полупроводника при комнатной температуре, если длина волны излучения п/п лазера

700 нм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,05 раза, его удельное сопротивление уменьшилось в четыре раза. Начальная температура образца Т = 300 К.

4.Определите высоту потенциального барьера на p+-n переходе на герма-

ниевой базе при комнатной температуре, если акцепторная примесь превышает донорную в 1,5 раза, а концентрация донорной примеси 1015 см-3. Концентрация собственных носителей в германии 2,4∙1013.

5.Определите сопротивление нагрузки для транзистора в схеме с общей базой, если коэффициент усиления по току равен 0,95, а входное сопротивление составляет 1 Ом (Ku=30).

Вариант 22

1.Оцените (в эВ) минимальную энергию электрона, локализованного в области с размерами 1 Å.

2.Оцените относительную населенность зоны проводимости полупроводника при температуре на 50 К выше комнатной, если длина волны излучения п/п лазера 0,85 мкм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при увеличении температуры в 1,25 раза, его удельное сопротивление уменьшилось в три раза. Конечная температура образца Т = 350 К.

4.Определите высоту потенциального барьера на симметричном p-n перехо-

де на кремниевой базе при комнатной температуре, концентрация донорной примеси 1012 см-3. Концентрация собственных носителей в германии

1,4∙1010.

5.Определите сопротивление нагрузки для транзистора в схеме с общим эмиттером, если коэффициент усиления по току равен 45, а входное сопротивление составляет 5 Ом (Ku=50).

Вариант 23

1.Оцените (в МэВ) минимальную энергию электрона, локализованного в области с размерами 10 ферми.

2.Оцените относительную населенность зоны проводимости полупроводника при температуре на 150 К ниже комнатной, если длина волны излучения п/п лазера 0,9 мкм.

3.Определите ширину запрещенной зоны собственного полупроводника, если при уменьшении температуры в 1,15 раза, его удельное сопротивление увеличилось в шесть раз. Начальная температура образца Т = 300 К.

4.Определите высоту потенциального барьера на p-n+ переходе на базе ар-

сенида галлия при комнатной температуре, если донорная примесь превышает акцепторную в 1,2, а концентрация донорной примеси 108 см-3. Концентрация собственных носителей в арсениде галлия 1,8∙106.

27

5.Определите сопротивление нагрузки для транзистора в схеме с общим коллектором, если коэффициент усиления по току равен 36, а входное сопротивление составляет 10 Ом (Ku=55).

Вариант 24

6.Оцените (в МэВ) минимальную энергию электрона, локализованного в области с размерами 10 ферми.

7.Оцените относительную населенность зоны проводимости полупроводника при температуре на 50 К выше комнатной, если длина волны излучения п/п лазера 0,85 мкм.

8.Определите ширину запрещенной зоны собственного полупроводника, если при уменьшении температуры в 1,15 раза, его удельное сопротивление увеличилось в шесть раз. Начальная температура образца Т = 300 К.

9.Определите высоту потенциального барьера на p-n+ переходе на базе ар-

сенида галлия при комнатной температуре, если донорная примесь превышает акцепторную в 1,2, а концентрация донорной примеси 108 см-3.

Концентрация собственных носителей в арсениде галлия 1,8∙106. 10.Определите сопротивление нагрузки для транзистора в схеме с общей ба-

зой, если коэффициент усиления по току равен 0,95, а входное сопротивление составляет 1 Ом (Ku=30).

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПРИ СОСТАВЛЕНИИ ОТЧЕТА ПО ЭКСПЕРИМЕНТАЛЬНЫМ ИССЛЕДОВАНИЯМ

Выполнение экспериментальных исследований формирует у студентов важные компетенции по навыкам проведения стандартных испытаний в области нанотехнологий, оформления отчета, анализа полученных результатов и формулировке вывода по проделанной работе, что является фундаментом для научно-исследовательской деятельности.

В процессе подготовки к выполнению лабораторной работы студент прежде всего овладевает способами постановки цели и выбора путей ее достижения. Для этого надо переписать из методического пособия по лабораторному практикуму в отчет название лабораторной работы и цель работы и

проанализировать цель работы по плану:

1)понять, какое физическое явление лежит в основе экспериментальных и теоретических методов предстоящего исследования;

2)определить, какие физические величины характеризуют рассматриваемое физическое явление;

3)выделить основные физические закономерности, которые связывают физические величины, характеризующие физические явление;

28

4) понять, какую физическую величину предстоит измерить в работе или какую закономерность необходимо проверить.

Далее надо переписать в отчет описание модели и постановку задачи.

Оформление описания модели, постановка задачи

Для оформления теоретических основ проводимых исследований в методических указаниях предусмотрен раздел «Описание модели, постановка задачи», в котором в доступной для восприятия форме представлена необходимая для выполнения работы информация. В процессе изучения раздела необходимо:

1)найти и выписать определение искомой технической характеристики или технологического параметра, значение которого станет численным результатом выполнения работы;

2)найти и записать условия проведения стендового испытания;

3)привести в отчете формулировку фундаментальной закономерности, которую предстоит использовать в работе;

4)сделать рисунки, поясняющие формулировки, правила и закономер-

ности;

5)разбить цель работы на иерархическую структуру выполнимых за-

дач.

Проверкой качества восприятия информации послужат ответы на контрольные вопросы, приведенные в конце методических указаний по данной работе.

Оформление методики эксперимента

Для подготовки к экспериментальной части исследований предусмотрен раздел «Методика эксперимента», который поможет студенту применить методы математического анализа и моделирования для достижения цели работы. В процессе изучения раздела необходимо:

1)понять и записать в отчет вывод формульного выражения для получения значения параметра, являющегося численным результатом работы (итоговое или расчетное выражение), особо отметив элементы моделирования (пренебрежение некоторыми внешними факторами) и сделав необходимые рисунки;

2)привести в отчете принципиальную схему испытаний с пояснениями, как и с какой точностью будут измерены параметры, входящие в итоговое формульное выражение;

3)записать в отчет таблицу для испытаний и численные значения параметров установки и заданных констант, необходимых для начала эксперимента;

29

4) разобраться, из каких блоков состоит установка и какова роль каждого из них.

В некоторых лабораторных работах используются модульные учебные комплексы, оснащенные современной цифровой измерительной аппаратурой. Это является инновационным подходом в образовательных технологиях. Такой подход позволяет студенту научиться самостоятельно вырабатывать индивидуальные методы организации и проведения эксперимента.

Оформление результатов измерения

Результаты измерения являются важной частью любого научного исследования, поскольку несут основную информацию о проведенных исследованиях и могут быть использованы при решении огромного круга задач, обретение навыков их грамотного анализа является основой всех компетенций будущего профессионала. Поэтому студент внимательно изучает порядок проведения лабораторной работы и в отчете формирует таблицу результатов эксперимента, рекомендованную пособием по лабораторному практикуму, делает обработку результатов измерения и определяет погрешности измерений.

На основании результатов эксперимента необходимо сделать и записать в отчет вывод по проделанной работе, в котором в соответствии с целью работы указывается:

1)какое явление наблюдалось при проведении эксперимента;

2)какой параметр и каким методом был измерен;

3)приводится доверительный интервал для искомого параметра или делается вывод об обоснованности формульного выражения для его оценки;

4)полученный экспериментальный результат сопоставляется с теоретической оценкой или с табличным значением;

5)указывается, ошибки измерения каких величин внесли основной вклад в погрешность измерения искомой физической величины.

Рекомендуем внимательно ознакомиться с образцом оформления отчета о проведении экспериментального исследования.

Образец оформления самостоятельной работы при подготовке к экспериментальному исследованию

ЗАВИСИМОСТЬ ВАХ ПОЛУПРОВОДНИКОВОГО ДИОДА ОТ ТЕМПЕРАТУРЫ В СХЕМЕ ПРЯМОГО ТОКА

Цель работы: опираясь на современные представления о структуре p- n-перехода, оценить с помощью формализованного моделирования на основе

30

экспериментально полученной ВАХ для германиевого диода Д310 величину «теплового тока носителей зарядов».

1)В основе исследований лежит гипотеза обеднения области p-n- перехода; и модель Эмберса-Мола для определения ВАХ p-n-перехода.

2)Итоговым результатом станет ВАХ p-n-перехода для различных значений температуры и полученные с ее помощью параметры диода.

3)В процессе исследований путем формализованного моделирования будет оценена величина «теплового тока носителей зарядов».

ТЕОРЕТИЧЕСКИЙ МИНИМУМ

Полупроводниковый «плоскостной» диод представляет собой тонкую

(менее 0,1 мм) монокристаллическую пластинку германия Ge или кремния Si, содержащую два слоя, один из которых имеет дырочную (р-типа), а второй – электронную (n – типа) проводимость.

Вольтамперная характеристика р-п-перехода (ВАХ) – зависимость силы тока I от приложенного напряжения U.

Важнейшими характеристиками диода являются его прямое и обратное сопротивления.

Статические сопротивления:

R

U

'

R'

U 1

 

2

.

 

 

 

 

I'

 

I21

Динамические сопротивления:

R

 

 

U

R'

 

U '

.

 

I

 

 

Д

 

Д

 

I

'

 

 

 

 

 

 

 

 

 

Динамические сопротивления проявляются при подключении к диоду источников переменного напряжения и используются для расчета цепей переменного тока.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]